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ABSTRACT

A visual approach in environment recognition for robot navigation is proposed. This work includes a template
matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered
environment. In this problem statement, a robot can move from the start to the goal by choosing a single path
between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the
proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using
evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of
environment recognition and efficiency of path planning computation.

Keywords: Environment recognition, robot vision, template matching filters, path planning, pseudo-bacterial
potential field.

1. INTRODUCTION

At the present time, robotics is one of the most important technologies since it is a fundamental part in au-
tomation and manufacturing process.1 In particular, there is a demand for autonomous mobile robots in various
fields of application, such as material transport, cleaning, monitoring, guiding people, and military applications.
These autonomous mobile robots must interact with their environment to accomplish their tasks. Computer vi-
sion techniques are widely used to sense and to perform the environment recognition, which is frequently changing
and unforeseen. This work addresses the problem of autonomous mobile robot navigation, understanding that
the mobile robot will have to interact with the environment and avoid collisions with obstacles, following the
path planned to achieve its established mission. All of these tasks, without the assistance of a human operator.
There are three tasks that must be carried out by an autonomous mobile robot to enable the execution of the
navigation. These activities are: world perception consisting in obstacle detection and modeling the environ-
ment; path planning for obtaining an ordered sequence of objective points and convert this sequence into a
path; the path tracking in controlling the robot to follow the path.

In this work, an accurate obstacle detection algorithm is implemented in order to model the environment of
the robot. We employ a template matching approach which allows to reliably detect obstacles and accurately
estimate their location coordinates. To achieve an effective autonomous mobile robot navigation, we propose
the integration of a recognition algorithm based on template-matching technique and a path planning algorithm
based on pseudo-bacterial potential field2 (PBPF). Computer simulation results are presented and discussed in
terms of accuracy of the recognition proposal, effectiveness of the path planning, and computational efficiency.

The paper is organized as follows. Section 2 describes the theoretical background of obstacle detection using
template matched filtering, and path planning using the PBPF. Section 3 presents the proposed methodology
for visual environment recognition for robot path planning. Section 4 presents and discuss the results given by
the experiments in real environments for robot navigation. Finally, Section 5 summarizes our conclusions.
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2. BACKGROUND

The theoretical background for visual environment recognition for robot path planning is described in this section.
The fundamentals for obstacle detection using template matched filters and the path planning background with
PBPF are explained below.

2.1 Visual environment recognition

Consider the scenario from Fig. 1 in order to monitoring the environment of a mobile robot. The optical setup
consists in an upper camera in which captures the working area of the robot. Let be f(x, y) the input scene
which is composed by a feasible workspace for navigation b(x, y), and several obstacles t̃(x, y) placed at unknown
location (x0, y0). Also, the input scene may be degraded with additive noise n(x, y). The signal model of the
input scene can be represented by the following expression3

f(x, y) = t̃(x, y) + b(x, y)[1− w̃(x, y)] + n(x, y), (1)

where t̃(x, y) is formed by the superposition of several obstacles {tj(x, y)|j = 1, . . . , J}, and the term w̃(x, y) is
a binary function which represents the support area of all the obstacles tj(x, y). So, the mathematical represen-
tation of the scene can be denoted by

f(x, y) =

J∑
j=1

tj(x− xj0, y − yj0) + b(x, y)

J∑
j=1

(1− wj(x− xj0, y − yj0)) + n(x, y), (2)

where J is the number of obstacles presented in the scene, each one placed in an unknown location (xj0, y
j
0).

For obstacle detection, template matched filtering is an accurate technique based on correlation operations
in frequency domain. Correlation filtering is a linear system, in which its impulse response is computed in order
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Figure 1. Optical setup for obstacle detection for mobile robot path planning
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to produce a high matching value between the input image and an appropriate filter. The designed filter is
related to a prior target reference information. Correlation filters can be synthesized by optimization of several
performance measures.4,5 An optimal filter design for target detection in terms of signal-to-noise ratio (SNR) is
the generalized matched filter.6 Also the generalized matched filter (GMF) optimized the variance of location
errors.7,8 Given the input signal of Eq. 1, the frequency response of a GMF is given as follows9

H(µ, ν) =
T (µ, ν) +Wb(µ, ν) +Wt(µ, ν)

1
2π |Wb(µ, ν)|2 ∗Nb(µ, ν) + 1

2π |Wt(µ, ν)|2 ∗Nt(µ, ν)
. (3)

Here, T (µ, ν), and Wb(µ, ν) are the Fourier transforms of t(x, y) and w(x, y), respectively, where Wt(µ, ν) is the
Fourier transform of 1−w(x, y). The terms mb and mt represents the mean value of the background and target
signal, respectively. The terms Nb(µ, ν) and Nt(µ, ν) are the spectral density functions of the background and
target, respectively.

2.2 Path planning

In this work, a PBPF algorithm is employed for path planning. The PBPF algorithm makes use of the artificial
potential field10 (APF) method and mathematical programming, using a metaheuristic based on a pseudo-
bacterial genetic algorithm11 (PBGA) as the global optimization method.

The main idea of the APF method is to establish an attractive potential field force around the goal point,
as well as to establish a repulsive potential field force around obstacles. The two potential fields acting together
(attractive + repulsive) form the total potential function Utotal(q). The APF method searches the falling of the
potential function to find a collision-free path, which is built from the start position to the goal position.2

The total potential function Utotal(q) can be obtained by the sum of the attractive potential and repulsive
potential,

Utotal(q) =
1

2

[
ka(q − qf )2 + kr

(
1

ρ
− 1

ρ0

)2]
, (4)

where q represents the robot position vector in a two-dimensional workspace, q = [x, y]T . The vector qf represents
the goal position and ka is a positive scalar-constant that represents the attractive proportional gain of the
function. The expression q − qf is related to the linear distance between the robot and the goal position. The
repulsive potential function has a limited range of influence; this prevents the movement of the robot from being
affected by a distant obstacle, where ρ0 represents the limit distance of influence of the potential field, and ρ is
the shortest distance to the obstacle; the positive scalar-constant kr is the repulsive proportional gain.

The generalized force Ftotal(q) which is used to drive the robot from the start position to the goal position,
see Fig. 1, it is obtained by the negative gradient of the total potential function Utotal(q),

10 this force is expressed
as follows

Ftotal(q) = −∇Utotal(q). (5)

In Eq. 4, all the parameters are known except for the positive scalar-constants ka and kr. Many ways can
be used to know the adequate value of this proportional gains, the most common methods are mathematical
analysis and approximate methods.12 In this work for the PBPF algorithm, the APF method is blended with a
PBGA to find the optimal (or nearly optimal) values for the proportional gains ka and kr.

The PBGA introduced a genetic operator called bacterial mutation11 that has demonstrated to be useful in
environments with a weak relationship between the parameters of a system. It is a simple algorithm that presents
a fast convergence and improvement in the solutions13 (in our case the values for the proportional gains ka and
kr), without being detrimental in landscape exploration. The core of PBGA contains the bacterium which is
able to carry a copy of a gene from a host cell and insert it into an infected cell. By the bacterial mutation, the
characteristics of a single bacterium can spread to the rest of the population (i.e., solutions), hence this method
mimics the process of microbial evolution.14 The PBGA can be algorithmically modeled for computer simulation
using the difference equation expressed as follows

P (τ + 1) = s(v(P (τ))), (6)

where τ represents the time, the new population P (τ + 1) is obtained from the current population P (τ) after it
was operated by random variation v, and selection s.15
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Figure 2. Proposed procedure for autonomous mobile robot navigation

3. PROPOSAL

The proposal to achieve the mobile robot navigation using visual environment recognition is presented in Fig. 2.
The proposed methodology consists in the integration of three algorithms: obstacle detection, path planning and
path tracking. These algorithms are explained as follows.

3.1 Obstacle detection

In the first section of Fig. 2, the obstacle detection procedure is shown. An input scene f(x, y) is captured by the
upper camera in order to monitor the environment, as described in Eq. 1. Assuming that the scene contains a
feasible workspace b(x, y) for robot navigation with J number of obstacles tj(x, y) presented in the environment.

In order to avoid collisions between the mobile robot and the obstacles, a correlation filtering approach is
implemented to detect the obstacles. A correlation filter is build using Eq. 3, and the filter is synthesized with a
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template reference. The template reference t(x, y) contains the average matrix from all the images of the target
centered at the origin. Also, the template contains average of the angle variation of the target with a set of
{0, 20, . . . , 360} degrees.

The cross correlation procedure between the input scene and the designed filter is computed. A correlation
plane is obtained as follows:

c(x, y) = f(x, y)⊗ h(x, y), (7)

where h(x, y) = IFT{H(µ, ν)} represents the inverse Fourier transform of the GMF filter described in Eq. 3.
The output correlation plane yields quantity levels of the best match. In this case, several peaks are produced
in where the area of each obstacle coincides.

The estimated location coordinates (xj0, y
j
0) of each detected obstacle are computed as

(x̂0, ŷ0) = argmax
(x,y)

{
|c(x, y)|2

}
. (8)

The computation of the location of each detected obstacle is needed, so to determine the location of the
correlation peak a threshold constrain is needed. For the estimated radius of each obstacle detected, we compute
the area A of using image binarization. The estimated radius is computed as

r̂ =
√
Aπ, (9)

where A is the area of the circumference form the detected object, given in pixels, and computed as follows:

A =

d∑
x,y

wa(x, y), (10)

where d is the number of pixels of the estimated area of the target, and wa(x, y) is a binary matrix which equals
the unity in the target support region, and zero otherwise.

3.2 Path Planning

In the second section of Fig. 2, the path planning procedure is shown. The PBPF algorithm is integrated by
the PBGA (composed by the genetic operators: selection, crossover and bacterial mutation), and by the APF
method with the potential field functions denoted in colored blocks. The PBPF for path planning starts with
the creation of an initial random population P (τ) of bacteria, where each bacterium contains a pair of the
proportional gains, one ka and one kr. The resultant path QG (solution) given by the PBPF will be composed
by the optimal pair of the proportional gains found.

After that the initial population is created, the evaluation process starts. The fitness function evaluation
contains three steps. First, the potential field Utotal(q) is computed using Eq. 4. Then, the potential force
Ftotal(q) is computed using Eq. 5. Last, the distance to travel by the robot is measured by the path length
function

S =

m∑
i=0

‖qi+1 − qi‖, (11)

where m is the number of robot configurations to reach the goal position.

Once that the evaluation has been completed, we continue with the selection process, P ′(τ) ← P (τ). In
the selection process, the best bacteria are chosen according to their fitness value. The selection process drives
the PBPF to improve the population of bacteria fitness over the successive generations.16 Next, the crossover
process is performed over the P ′(τ). The crossover process roughly mimics biological recombination between
two single-chromosomes organisms.17 Then, the bacterial mutation process is performed over the P ′(τ), where
random mutations alter a certain percentage of the bits in the list of bacteria. The bacterial mutation operator is
inspired by the biological model of bacterial cells; it makes that the PBGA mimics the phenomenon of microbial
evolution.13 To find the global optimum; it is necessary to explore different regions in the search space that
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Figure 3. Obstacle detection from an input scene using correlation filtering

have not been covered by the current population of bacteria. This is achieved by adding new information to the
bacteria; the information is generated randomly by the bacterial mutation operator applied to all the bacteria,
one by one.

The PBPF iterates until the maximum number of generations is reached. Therefore, the PBPF evolves the
proportional gains ka and kr to obtain the corresponding optimal values to perform the path planning. Finally,
the PBPF gives the path QG found.

3.3 Path Tracking

In the third section of Fig. 2, the path tracking procedure is shown. The path QG obtained by the PBPF is
a sequence of ordered objective points from the start to the goal position. This sequence of ordered objective
points is converted to rotate and advance motion commands to let the robot moves from q(i) to q(i + 1) until
the last configuration is reached, i.e., the goal position.

4. EXPERIMENTS AND RESULTS

The experimental results for visual environment recognition and path planning are presented in this section.
The proposed system to achieve the mobile robot navigation using visual environment recognition that is shown
in Fig. 2 was implemented on a computer with the Intel Core i7-4770, with a webcam Logitec C920HD for
environment recognition. The proposed system was programmed in Matlab 2015a on Ubuntu 14.04.
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The optical setup described by Fig. 1 was built in a real scenario. This scene represents f(x, y) from the signal
model depicted in Eq. 2. Here, the camera captures a scene used as visual environment for obstacle detection,
see Fig. 3. As it can be observed, the input scene shows the map with a complex setup in order to solve obstacle
detection with several challenges. Six different configurations of the environment for mobile robot navigation
were tested.

We evaluated the performance of the visual environment recognition algorithm using quantitative metrics. To
quantify the accuracy of obstacle detection, we tested the quality of the correlation filter. For this, we employed
the discrimination capability (DC) of the correlation procedure. The DC measures the ability of a filter to
recognize a target among false artifacts, given by

DC = 1− |c
b|2
|ct|2 , (12)

where cb and ct is the maximum value produced in the area of the background and the target, respectively. The
evaluation of the proposed algorithm in terms of DC is shown in Fig. 4(a). The algorithm yields an overall
performance of DC= 0.822± 0.157 using the entire map set shown Fig. 5. A quantitative evaluation for obstacle
detection is established. The accuracy of the detection of each obstacle is measured with the location error and
the radius error. The location error (LE) is a measure for comparing the real and estimated values, described by

LE =
1

J

J∑
j=1

√
(xj0 − x̂j0)2 + (yj0 − ŷj0)2, (13)

where (xj0, y
j
0) and (x̂j0, ŷ

j
0) are the real and estimated coordinates of all the obstacles presented in input scene.
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Table 1. Visual environment recognition, position and radius of the obstacles detected in each environment

Environment Obstacle j(x, y, r) in pixels Obstacle j(x, y, r) in meters
(262, 215, 19.779), (262, 254, 19.779), (0.712, 0.585, 0.054), (0.712, 0.691, 0.054),

map0 (263, 174, 19.779), (265, 296, 19.779), (0.715, 0.473, 0.054), (0.720, 0.805, 0.054),
num. of obstacles (265, 336, 19.779), (305, 175, 19.779), (0.720, 0.914, 0.054), (0.829, 0.476, 0.054),

detected: 9 (308, 336, 19.779), (348, 176, 19.779), (0.837, 0.914, 0.054), (0.946, 0.479, 0.054),
(352, 335, 19.779). (0.957, 0.911, 0.054).

(269, 296, 19.763), (272, 258, 19.779), (0.731, 0.805, 0.054), (0.740, 0.701, 0.054),
map1 (273, 137, 19.779), (273, 178, 19.779), (0.742, 0.372, 0.054), (0.742, 0.484, 0.054),

num. of obstacles (273, 216, 19.779), (311, 299, 19.617), (0.742, 0.587, 0.054), (0.846, 0.813, 0.053),
detected: 9 (351, 298, 19.763), (391, 299, 18.780), (0.954, 0.810, 0.054), (1.063, 0.813, 0.051),

(429, 302, 19.779). (1.166, 0.821, 0.054).
(188, 134, 19.779), (230, 132, 19.779), (0.511, 0.364, 0.054), (0.625, 0.359, 0.054),

map2 (230, 290, 19.779), (269, 171, 19.779), (0.625, 0.788, 0.054), (0.731, 0.465, 0.054),
num. of obstacles (271, 209, 19.779), (273, 131, 19.779), (0.737, 0.568, 0.054), (0.742, 0.356, 0.054),

detected: 12 (273, 248, 19.779), (273, 289, 19.779), (0.742, 0.674, 0.054), (0.742, 0.786, 0.054),
(317, 290, 19.779), (360, 291, 19.779), (0.862, 0.788, 0.054), (0.979, 0.791, 0.054),
(496, 291, 19.779), (538, 289, 19.779). (1.349, 0.791, 0.054), (1.463, 0.786, 0.054).
(158, 247, 19.779), (160, 324, 19.779), (0.430, 0.672, 0.054), (0.435, 0.881, 0.054),

map3 (160, 362, 19.779), (161, 286, 19.779), (0.435, 0.984, 0.054), (0.438, 0.778, 0.054),
num. of obstacles (204, 363, 19.779), (248, 367, 19.779), (0.555, 0.987, 0.054), (0.674, 0.998, 0.054),

detected: 12 (354, 141, 19.763), (395, 143, 19.779), (0.962, 0.383, 0.054), (1.074, 0.389, 0.054),
(438, 143, 19.779), (476, 222, 19.779), (1.191, 0.389, 0.054), (1.294, 0.604, 0.054),
(479, 182, 19.779), (481, 143, 19.779). (1.302, 0.495, 0.054), (1.308, 0.389, 0.054).
(76, 123, 19.779), (118, 122, 19.779), (0.207, 0.334, 0.054), (0.321, 0.332, 0.054),

map4 (127, 294, 19.779), (170, 292, 19.779), (0.345, 0.799, 0.054), (0.462, 0.794, 0.054),
num. of obstacles (212, 292, 19.779), (254, 292, 19.779), (0.576, 0.794, 0.054), (0.691, 0.794, 0.054),

detected: 12 (326, 126, 19.779), (368, 124, 19.763), (0.886, 0.343, 0.054), (1.001, 0.337, 0.054),
(407, 124, 17.823), (426, 368, 19.779), (1.107, 0.337, 0.048), (1.158, 1.001, 0.054),
(443, 124, 19.779), (468, 366, 19.779). (1.204, 0.337, 0.054), (1.272, 0.995, 0.054).
(127, 310, 19.779), (170, 309, 19.348), (0.345, 0.843, 0.054), (0.462, 0.840, 0.053),

map5 (212, 306, 19.779), (213, 181, 19.779), (0.576, 0.832, 0.054), (0.579, 0.492, 0.054),
num. of obstacles (215, 223, 19.779), (215, 265, 19.609), (0.585, 0.606, 0.054), (0.585, 0.720, 0.053),

detected: 12 (364, 263, 19.779), (365, 303, 19.779), (0.990, 0.715, 0.054), (0.992, 0.824, 0.054),
(366, 222, 19.779), (370, 182, 19.779), (0.995, 0.604, 0.054), (1.006, 0.495, 0.054),
(413, 185, 19.779), (456, 186, 19.779). (1.123, 0.503, 0.054), (1.240, 0.506, 0.054).

Fig. 4(b) presents the evaluation of the proposed algorithm in terms of LE. The proposed algorithm yields an
accuracy of LE= 2.27 ± 0.37 pixels for the tested map set. Also, the radius error (RE) compares the real and
estimated radius in pixels of the obstacle in the scene. The RE is given by

RE =
1

J

J∑
j=1

∣∣rj − r̂j∣∣ , (14)

where rj and r̂j are the real and estimated radii. As we can see in Fig. 4(b) the proposed algorithm yields an
accuracy of RE= 2.31± 0.23 pixels.

Table 1 shows the position and radius of the obstacles detected in each test environment. The first column
indicates the environment and the number of obstacles detected by the proposed obstacle detection algorithm,
described in the first section of Fig. 2. The second column contains the information of each obstacle in pixels,
the information is ordered in the coordinates x and y, and its radius r. We are considering a workspace of
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Table 2. Robot mission (start and goal position), resultant proportional gains (best), and path planning results for each
test environment. All data are expressed in meters except for the proportional gains

map0 map1 map2 map3 map4 map5
Start (1.305, 0.653) (0.272, 0.218) (0.326, 1.115) (0.218, 0.408) (1.604, 1.088) (0.258, 0.517)
Goal (0.326, 0.653) (1.577, 1.088) (1.142, 0.489) (1.495, 0.680) (0.517, 0.272) (1.441, 0.816)
ka 1.765 0.353 3.255 2.353 2.745 0.157
kr 9.804 3.373 7.843 4.314 7.177 1.098
Best 1.465 1.819 1.228 1.365 1.381 1.834
Mean 1.552 1.860 1.247 1.386 1.396 2.012
Worst 1.811 1.928 1.323 1.442 1.466 2.396
Std. Dev. 0.092 0.028 0.019 0.019 0.015 0.171

640 × 480 pixels (images), where the coordinate (0,0) is at the upper left corner. The third column contains
the information of the obstacles in meters (real world). It is the same information that the second column but
converted to meters. So, we are considering a workspace of 1.74 × 1.29 meters and also the coordinate (0,0) is
at the upper left corner.

Table 2 shows the robot mission assigned in each test environment, the mission is composed by a pair of
coordinates (x, y), one pair for the start position and one pair for the goal position. The Table 2 shows the
best proportional gains ka and kr found by the PBPF algorithm to perform the path planning, described in the
second section of Fig. 2. The resultant paths using the best proportional gains can be observed in Fig. 5 (c),
(f), (i), (l), (o), and (r). On the figures of the resultant paths it can be observed how all the paths are safe (i.e.,
free of collisions) and in all cases the PBPF gives a smooth and effective path to drive the mobile robot to its
goal. Table 2 also shows the statistical results for thirty independent tests in each environment. The shortest
path length (best) found in meters, the average path length (mean), the worst path length found for each test
environment (worst), and the standard deviation of the tests (std. dev.).

5. CONCLUSIONS

A proposal for visual environment recognition for robot path planning is presented. The proposal employs an
upper camera for the recognition of the obstacles in order to establish a feasible workspace for the mobile robot.
In order to solve obstacle detection, we propose a correlation filtering approach. The proposed algorithm for
obstacle detection yields good estimation of the location and radii of several obstacles. Then a feasible workspace
is built in order to plan an efficient and safe path for mobile robot navigation. We have seen through the results
how the PBPF algorithm solves the path planning problem for the different environments exposed. The PBPF
algorithm takes the information of the environment given by the obstacle detection algorithm, then the PBPF is
able to perform the path planning. The resultant path is employed to perform the mobile robot navigation. The
overall results prove the performance of the proposal in terms of obstacle detection accuracy and path planning
efficiency.
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CYT), and Secretaŕıa de Investigación y Posgrado from Instituto Politécnico Nacional projects SIP-20171387
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