CATEGORY: INTELLIGENT MACHINES AND 10T - IM02

P7126 Ulises Orozco: ulises.orozco@cetys.mx

CETYS.

UNIVERSIDAD
[

Parallel Implementation of a Bacterial Potential Field

Algorithm for Robot Path Planning

: 12 2 . 2 . 3 3

Snvioia Ulises Orozco-Rosas **, Oscar Montiel”, Roberto Sepulveda®, Antonio S. Montemayor”, and Juan J. Pantrigo

GPU ulises.orozco@cetys.mx, {oross, rsepulvedac}@ipn.mx, {antonio.sanz, juanjose.pantrigo}@urjc.es
EDUCATION ICentro de Ensefianza Técnica y Superior (Mexico), “Instituto Politécnico Nacional (Mexico), *Universidad Rey Juan Carlos (Spain)
g After the parallel evaluation, the bacterial operators are applied to evolve the bacteria in the
Introduction] population P(t). All the process is repeated over and over again until the maximum number of Performance Results
- - . generations has been achieved. If the resultant path successfully achieves the goal in a safe and

In this work, a parallel implementation on GPU of the bac- | ¢fficient manner, the path is returned as a result, otherwise a message of “goal has not been The experiments were 7200

terial potential field (BPF) algorithm for robot path planning
is presented. The BPF algorithm proposed in [1] is employed
to ensure a feasible, smooth, and safe path for robot naviga-
tion.

The BPF algorithm employs concepts from the artificial
potential field (APF) method, mathematical programming,
and meta-heuristic to solve efficiently the robot path planning
problem.

The path planning problem in mobile robots is one of the
most computationally intensive tasks, in that sense, heteroge-
neous computing helps to gain performance. By means of
GPUs is possible to process data-intensive tasks (evaluation
of solutions) efficiently.

Algorithm]

The BPF algorithm makes use of the APF method proposed
by Khatib [2] with a bacterial evolutionary algorithm (BEA)
to obtain an enhanced flexible path planner.

The BEA introduces two operators inspired by the microbi-
al evolution phenomenon, bacterial mutation and genetic
transfer. The labor of the bacterial mutation operator is to op-
timize the chromosome of a single bacterium, and the genetic
transfer operator provides the transfer of information be-
tween the bacteria in the population [3].

The BPF algorithm uses the start, goal and obstacle posi-
tions as features to obtain a sequence of objective points
(path) that the robot must attain. Hence, the BPF algorithm
achieves the task of path planning generation, with the partic-
ular characteristic that it provides an optimal or nearly opti-
mal reachable set of configurations (path) if it exists.

The flowchart (right) shows the BPF algorithm and its par-
allel process implemented on GPU (green blocks). The pro-
cess starts with a creation of a random population of bacteria
P(1), each bacterium (possible solution) is codified with the
values of the proportional gains, attraction k, and repulsion &,
required to generate a feasible path. For the parallel evalua-
tion on GPU, where each bacterium is evaluated. First, the
potential field U(g) computation is performed,

1 1 12
- ——— e
V@) =g k@ +k: (5 -5)]
Then, the generalized potential force F{g) which is used to
drive the robot is obtained by the negative gradient of the po-
tential field U(g),

F(q) =-VU(q)

Last, for the parallel evaluation on GPU, the potential field
path evaluation S is performed,

1941 — aill

achicved” is displayed.

Start

Maplstart, goal, obstacles]

<

l =
Create an initial Potential field Input
population P(t) computation U(q) "

Perform bacterial Potential force ose
mutation P/(t) computation F(q) * goal

Perform genetic
transfer P/(t)

Ndo uo uonenien3 ajjesed

Bacterial Operators

Yes
Output

Robot configurations[path]

For the parallel implementation on GPU, we have chosen MATLAB-CUDA as a platform to
implement the BPF algorithm. We use CUDA kernel integration in the MATLAB application, a
kernel (code written in CUDA) called from MATLAB is executed on the GPU to accelerate the
evaluation process (potential field computation, potential force computation, and potential field
path evaluation) of the BPF algorithm.

[Path Planning Results]

The figures (below) show the path planning results for different test environments. It can be ob-
served that in all the environments the resultant path is free of collision with the obstacles (safe
path), is smooth for a pi | implementation in real robots, and is the shortest path to reach
the goal (in the best of cases).

Test environment | est environment 2 Test environment 3

achieved using:

. Software: NVIDIA
CUDA 7.5; MATLAB
R2015A; Ubuntu Trusty
distribution of Linux.

. Hardware: Intel i7-
5820K CPU@3.30 GHz;
NVIDIA GeForce GTX =
TITAN X.

To evaluate the perfor- 1230 250
mance of the parallel BPF
implementation on GPU
versus the sequential imple- 0
mentation on CPU, we car-
ried out independently thir-
ty tests for each total popu-
lation evaluated (bacteria).

The convergence plot
(red), the average computa-
tion time in seconds for the
parallel implementation
(green) and for the sequen-

tial implementation (blue) L o o . oo s
are shown in the next Evnted s nsvidua)
graphs. T —

[Conclusion]

. In this work, we have presented the parallel implementation on GPU of a bacte-
rial potential field (BPF) algorithm for robot path planning.

. The parallel BPF has demonstrated its capability to perform path planning for
different environments and population sizes.

. The performance results show that the parallel implementation on GPU acceler-
ates the evaluation process by a factor of 2.4x for the bigger population tested.

. The performance results show that a small population size could guide the BPF
algorithm to reasonable solutions (paths) and that a large population size could
make the BPF algorithm to spend more computation time o find best solutions.

. Making a compromise between solution quality and computation time, we have
found that the best performance on GPU is obtained when the total population
evaluated is of 15,000 (bacteria evaluated) or bigger.

. Furthermore, the path planning results demonstrates the efficiency of the paral-
lel BPF algorithm to solve the path planning problem in different scenarios.

[References & Acknowledgments

as, and R. Sepiilveda.: Path planning for mobile robots using Bacterial Po-
tatic and dynamic obstacles. Expert Systems with Applications, 42(12), pp.

al Journal

¢ avoidance for manipulators and mobile robots. The Intern

90-98, 1986.

hi.c Fuzzy system parameters discovery by bacterial evolutionary algorithm.
ystems, 7(5), pp. 608-616, 1999.

‘We thank to the M

n National Council of Science and Technology (CONACYT) for
supporting our research activities.

