Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1023
Título : Studies in Computational Intelligence
Título de capítulo: GPU Accelerated Membrane Evolutionary Artificial Potential Field for Mobile Robot Path Planning
Autor : Orozco Rosas, Ulises
Picos, Kenia
Montiel, Oscar
Castillo, Oscar
Palabras clave : Membrane computing;Genetic algorithms;Artificial potential field;Path planning;Mobile robots;Graphics processing unit
Sede: Campus Tijuana
Fecha de publicación : mar-2021
Resumen : This work presents a graphics processing unit (GPU) accelerated membrane evolutionary artificial potential field (MemEAPF) algorithm implementation for mobile robot path planning. Three different implementations are compared to show the performance, effectiveness, and efficiency of the MemEAPF algorithm. Simulation results for the three different implementations of the MemEAPF algorithm, a sequential implementation on CPU, a parallel implementation on CPU using the open multi-processing (OpenMP) application programming interface, and the parallel implementation on GPU using the compute unified device architecture (CUDA) are provided to validate the comparative and analysis. Based on the obtained results, we can conclude that the GPU implementation is a powerful way to accelerate the MemEAPF algorithm because the path planning problem in this work has been stated as a data-parallel problem.
URI : https://repositorio.cetys.mx/handle/60000/1023
ISSN : Online ISBN 978-3-030-68776-2
Aparece en las colecciones: Capítulos de Libro

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons