Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/132
Título : Mobile robot path planning using membrane evolutionary artificial potential field
Otros títulos : Applied Soft Computing Journal
Autor : Orozco Rosas, Ulises
Montiel, Oscar
Sepúlveda, Roberto
Palabras clave : Path planning;Membrane computing;Membrane-inspired evolutionary algorithm;Evolutionary computation;Mobile robots
Fecha de publicación : 31-ene-2019
Citación : 77;
Resumen : In this paper, a membrane evolutionary artificial potential field (memEAPF) approach for solving the mobile robot path planning problem is proposed, which combines membrane computing with a genetic algorithm (membrane-inspired evolutionary algorithm with one-level membrane structure) and the artificial potential field method to find the parameters to generate a feasible and safe path. The memEAPF proposal consists of delimited compartments where multisets of parameters evolve according to rules of biochemical inspiration to minimize the path length. The proposed approach is compared with artificial potential field based path planning methods concerning to their planning performance on a set of twelve benchmark test environments, and it exhibits a better performance regarding path length. Experiments to demonstrate the statistical significance of the improvements achieved by the proposed approach in static and dynamic environments are shown. Moreover, the implementation results using parallel architectures proved the effectiveness and practicality of the proposal to obtain solutions in considerably less time.
metadata.dc.description.url: https://doi.org/10.1016/j.asoc.2019.01.036
URI : https://repositorio.cetys.mx/handle/60000/132
ISSN : 1568-4946
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons