Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1464
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Montiel, Miguel-
dc.contributor.authorOrozco Rosas, Ulises-
dc.contributor.authorSánchez Adame, Moises-
dc.contributor.authorPicos, Kenia-
dc.contributor.authorMontiel, Oscar-
dc.date.accessioned2022-09-12T18:20:34Z-
dc.date.available2022-09-12T18:20:34Z-
dc.date.created2021-05-
dc.date.issued2021-07-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1464-
dc.description.abstractTraffic Sign Detection (TSD) is a complex and fundamental task for developing autonomous vehicles; it is one of the most critical visual perception problems since failing in this task may cause accidents. This task is fundamental in decision-making and involves different internal conditions such as the internal processing system or external conditions such as weather, illumination, and complex backgrounds. At present, several works are focused on the development of algorithms based on deep learning; however, there is no information on a methodology based on descriptive statistical analysis with results from a solid experimental framework, which helps to make decisions to choose the appropriate algorithms and hardware. This work intends to cover that gap. We have implemented some combinations of deep learning models (MobileNet v1 and ResNet50 v1) in a combination of the Single Shot Multibox Detector (SSD) algorithm and the Feature Pyramid Network (FPN) component for TSD in a standardized dataset (LISA), and we have tested it on different hardware architectures (CPU, GPU, TPU, and Embedded System). We propose a methodology and the evaluation method to measure two types of performance. The results show that the use of TPU allows achieving a processing training time 16.3 times faster than GPU and better results in terms of precision detection for one combination. RESUMEN La detección de señales de tráfico (TSD) es una tarea compleja y fundamental para el desarrollo de vehículos autónomos; es uno de los problemas de percepción visual más críticos ya que fallar en esta tarea puede causar accidentes. Esta tarea es fundamental en la toma de decisiones e involucra diferentes condiciones internas como el sistema de procesamiento interno o condiciones externas como el clima, la iluminación y fondos complejos. En la actualidad, varios trabajos están enfocados en el desarrollo de algoritmos basados ​​en aprendizaje profundo; sin embargo, no se cuenta con información sobre una metodología basada en análisis estadístico descriptivo con resultados de un marco experimental sólido, que ayude a tomar decisiones para elegir los algoritmos y hardware adecuados. Este trabajo pretende cubrir ese vacío. Hemos implementado algunas combinaciones de modelos de aprendizaje profundo (MobileNet v1 y ResNet50 v1) en una combinación del algoritmo Single Shot Multibox Detector (SSD) y el componente Feature Pyramid Network (FPN) para TSD en un conjunto de datos estandarizado (LISA), y lo he probado en diferentes arquitecturas de hardware (CPU, GPU, TPU y sistema integrado). Proponemos una metodología y el método de evaluación para medir dos tipos de desempeño. Los resultados muestran que el uso de TPU permite lograr un tiempo de entrenamiento de procesamiento 16,3 veces más rápido que GPU y mejores resultados en términos de precisión de detección para una combinación.es_ES
dc.description.sponsorshipSPIE Optical Engineeringes_ES
dc.language.isoen_USes_ES
dc.relation.ispartofseriesvol.9;-
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectTraffic sign detectiones_ES
dc.subjectDeep learninges_ES
dc.subjectHardware accelerationes_ES
dc.subjectComputer visiones_ES
dc.subjectAutonomous vehicleses_ES
dc.subjectEmbedded systemses_ES
dc.subjectDigital systemses_ES
dc.titleEvaluation method of deep learning-based embedded systems for traffic sign detectiones_ES
dc.title.alternativeIEEE Accesses_ES
dc.typeArticlees_ES
dc.description.urlhttps://www.researchgate.net/publication/335668422_Evaluation_of_algorithms_for_traffic_sign_detectiones_ES
dc.format.page101217-101238es_ES
dc.identifier.doiDOI: 10.1109/ACCESS.2021.3097969-
dc.identifier.indexacionSCOPUSes_ES
dc.subject.sedeCampus Tijuanaes_ES
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Evaluation_Method_of_Deep_Learning-Based_Embedded_Systems_for_Traffic_Sign_Detection.pdf3.83 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons