Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/147
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorOrozco Rosas, Ulises-
dc.contributor.authorPicos, Kenia-
dc.contributor.authorMontiel, Oscar-
dc.date.accessioned2019-11-07T17:29:59Z-
dc.date.available2019-11-07T17:29:59Z-
dc.date.created2019-09-18-
dc.date.issued2019-10-28-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/147-
dc.description.abstractA hybrid path planning algorithm based on membrane pseudo-bacterial potential field (MemPBPF) is proposed. Membrane-inspired algorithms can reach an evolutionary behavior based on biochemical processes to find the best parameters for generating a feasible and safe path. The proposed MemPBPF algorithm uses a combination of the structure and rules of membrane computing. In that sense, the proposed MemPBPF algorithm contains dynamic membranes that include a pseudo-bacterial genetic algorithm for evolving the required parameters in the artificial potential field method. This hybridization between membrane computing, the pseudo-bacterial genetic algorithm, and the artificial potential field method provides an outperforming path planning algorithm for autonomous mobile robots. Computer simulation results demonstrate the effectiveness of the proposed MemPBPF algorithm in terms of path length considering collision avoidance and smoothness. Comparisons with two different versions employing a different number of elementary membranes and with other artificial potential field based algorithms are presented. The proposed MemPBPF algorithm yields improved performance in terms of time execution by using a parallel implementation on a multi-core computer. Therefore, the MemPBPF algorithm achieves high performance yielding competitive results for autonomous mobile robot navigation in complex and real scenarios.es_ES
dc.description.sponsorshipIEEE Accesses_ES
dc.language.isoen_USes_ES
dc.relation.ispartofseries;7-
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectArtificial potential fieldes_ES
dc.subjectAutonomous mobile robotses_ES
dc.subjectMembrane computinges_ES
dc.subjectPath planninges_ES
dc.subjectPseudo-bacterial genetic algorithmes_ES
dc.titleHybrid Path Planning Algorithm Based on Membrane Pseudo-Bacterial Potential Field for Autonomous Mobile Robotses_ES
dc.title.alternativeIEEE Accesses_ES
dc.typeArticlees_ES
dc.description.urlhttps://ieeexplore.ieee.org/document/8884165/keywords#keywordses_ES
dc.format.page156787 - 156803es_ES
dc.identifier.indexacionJCRes_ES
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons