Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1664
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBerrones-Reyes, Mayra-
dc.contributor.authorSalazar-Aguilar, Angelica-
dc.contributor.authorCastillo-Olea, Cristian-
dc.date.accessioned2023-08-28T18:41:33Z-
dc.date.available2023-08-28T18:41:33Z-
dc.date.created2023-07-
dc.date.issued2023-08-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1664-
dc.description.abstractConvolutional neural networks and deep learning models represent the gold standard in medical image classification. Their innovative architectures have led to notable breakthroughs in image classification and feature extraction performance. However, these advancements often remain underutilized in the medical imaging field due to the scarcity of sufficient labeled data which are needed to leverage these new features fully. While many methodologies exhibit stellar performance on benchmark data sets like DDSM or Minimias, their efficacy drastically decreases when applied to real-world data sets. This study aims to develop a tool to streamline mammogram classification that maintains high reliability across different data sources. We use images from the DDSM data set and a proprietary data set, YERAL, which comprises 943 mammograms from Mexican patients. We evaluate the performance of ensemble learning algorithms combined with prevalent deep learning models such as Alexnet, VGG-16, and Inception. The computational results demonstrate the effectiveness of the proposed methodology, with models achieving 82% accuracy without overtaxing our hardware capabilities, and they also highlight the efficiency of ensemble algorithms in enhancing accuracy across all test cases.es_ES
dc.description.sponsorshipMDPI Academic Open Access Publishinges_ES
dc.language.isoen_USes_ES
dc.relation.ispartofseriesvol. 13;17-
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectConvolutional neural networkes_ES
dc.subjectEnsemble learninges_ES
dc.subjectDep learninges_ES
dc.subjectTransfer learninges_ES
dc.subjectImagi classificationes_ES
dc.subjectMedical imaginges_ES
dc.subjectMammographyes_ES
dc.titleUse of ensemble learning to improve performance of known convolutional neural networks for mammography classificationes_ES
dc.title.alternativeApliedd sciencieses_ES
dc.typeArticlees_ES
dc.description.urlhttps://www.mdpi.com/journal/applscies_ES
dc.identifier.doihttps://doi.org/10.3390/app13179639-
dc.identifier.indexacionJCRes_ES
dc.subject.sedeCampus Mexicalies_ES
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
applsci-13-09639.pdf911.79 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons