Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1746
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRojas Mendizábal, Verónica Alexandra-
dc.contributor.authorCastillo Olea, Cristián-
dc.contributor.authorGómez Siono, Alexandra-
dc.contributor.authorZuñiga, Clemente-
dc.date.accessioned2024-02-26T18:42:09Z-
dc.date.available2024-02-26T18:42:09Z-
dc.date.created2020-12-
dc.date.issued2021-02-23-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1746-
dc.description.abstractThoracic pain is a shared symptom among gastrointestinal diseases, muscle pain, emotional disorders, and the most deadly: Cardiovascular diseases. Due to the limited space in the emergency department, it is important to identify when thoracic pain is of cardiac origin, since being a symptom of CVD (Cardiovascular Disease), the attention to the patient must be immediate to prevent irreversible injuries or even death. Artificial intelligence contributes to the early detection of pathologies, such as chest pain. In this study, the machine learning techniques were used, performing an analysis of 27 variables provided by a database with information from 258 geriatric patients with 60 years old average age from Medical Norte Hospital in Tijuana, Baja California, Mexico. The objective of this analysis is to determine which variables are correlated with thoracic pain of cardiac origin and use the results as secondary parameters to evaluate the thoracic pain in the emergency rooms, and determine if its origin comes from a CVD or not. For this, two machine learning techniques were used: Tree classification and cross-validation. As a result, the Logistic Regression model, using the characteristics proposed as second factors to consider as variables, obtained an average accuracy (μ) of 96.4% with a standard deviation (σ) of 2.4924, while for F1 a mean (μ) of 91.2% and a standard deviation (σ) of 6.5640. This analysis suggests that among the main factors related to cardiac thoracic pain are: Dyslipidemia, diabetes, chronic kidney failure, hypertension, smoking habits, and troponin levels at the time of admission, which is when the pain occurs. Considering dyslipidemia and diabetes as the main variables due to similar results with machine learning techniques and statistical methods, where 61.95% of the patients who suffer an Acute Myocardial Infarction (AMI) have diabetes, and the 71.73% have dyslipidemia.es_ES
dc.description.sponsorshipNational Library of Medicinees_ES
dc.language.isoen_USes_ES
dc.relation.ispartofseriesvol. 18;núm. 4-
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectMachine learninges_ES
dc.subjectThoracic paines_ES
dc.subjectTree classificationes_ES
dc.subjectCross-validationes_ES
dc.titleAssessment of thoracic pain using machine learning: a case study from Baja California, Méxicoes_ES
dc.title.alternativeIJERPHes_ES
dc.typeArticlees_ES
dc.description.urlhttps://pubmed.ncbi.nlm.nih.gov/33672112/es_ES
dc.format.page2155es_ES
dc.identifier.doihttps://doi.org/10.3390/ijerph18042155-
dc.identifier.indexacionSCOPUSes_ES
dc.subject.sedeCampus Mexicalies_ES
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ijerph-18-02155-v3.pdf1.42 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons