https://repositorio.cetys.mx/handle/60000/1747
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Orozco Rosas, Ulises | - |
dc.contributor.author | Picos, Kenia | - |
dc.contributor.author | Montiel, Oscar | - |
dc.contributor.author | Castillo, Oscar | - |
dc.date.accessioned | 2024-02-26T18:54:30Z | - |
dc.date.available | 2024-02-26T18:54:30Z | - |
dc.date.issued | 2021-03 | - |
dc.identifier.citation | Orozco-Rosas, U., Picos, K., Montiel, O., Castillo, O. (2021). GPU Accelerated Membrane Evolutionary Artificial Potential Field for Mobile Robot Path Planning. In: Castillo, O., Melin, P. (eds) Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-68776-2_13 | es_ES |
dc.identifier.uri | https://repositorio.cetys.mx/handle/60000/1747 | - |
dc.description.abstract | This work presents a graphics processing unit (GPU) accelerated membrane evolutionary artificial potential field (MemEAPF) algorithm implementation for mobile robot path planning. Three different implementations are compared to show the performance, effectiveness, and efficiency of the MemEAPF algorithm. Simulation results for the three different implementations of the MemEAPF algorithm, a sequential implementation on CPU, a parallel implementation on CPU using the open multi-processing (OpenMP) application programming interface, and the parallel implementation on GPU using the compute unified device architecture (CUDA) are provided to validate the comparative and analysis. Based on the obtained results, we can conclude that the GPU implementation is a powerful way to accelerate the MemEAPF algorithm because the path planning problem in this work has been stated as a data-parallel problem. | es_ES |
dc.language.iso | en_US | es_ES |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/mx/ | * |
dc.subject | Membrane computing | es_ES |
dc.subject | Genetic algorithms | es_ES |
dc.subject | Artificial potential field | es_ES |
dc.subject | Path planning | es_ES |
dc.subject | Mobile robots | es_ES |
dc.subject | Graphics processing unit | es_ES |
dc.title | Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications | es_ES |
dc.type | Book chapter | es_ES |
dc.description.edition | Springer, Cham | es_ES |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-68776-2_13 | - |
dc.subject.sede | Campus Tijuana | es_ES |
dc.publisher.editorial | Springer Link | es_ES |
dc.title.chapter | GPU Accelerated Membrane Evolutionary Artificial Potential Field for Mobile Robot Path Planning | es_ES |
Aparece en las colecciones: | Capítulos de Libro |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons