Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1750
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez-Leyva, Josué Aarón-
dc.contributor.authorGuerra-Rosas, Esperanza-
dc.contributor.authorÁlvarez-Borrego, Josué-
dc.date.accessioned2024-02-26T20:27:00Z-
dc.date.available2024-02-26T20:27:00Z-
dc.date.created2021-02-21-
dc.date.issued2021-04-24-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1750-
dc.description.abstractThis article presents a new methodology to diagnostics ten types of skin lesions based on the image’ s Fourier spectral information in an additive color model. All spectral information and correlation coefficients between the skin lesions classes conform the input signals to an Artificial Neural Network. In general, the results show the well-defined classification for all the skin lesions classes based on the high values for Accuracy, Precision, Sensitivity, and Specificity metrics performance and a reduced images misclassification percentage (≈5.9%) for the Testing sub-dataset, and less for Training (≈2.8%) and Validation (≈5.6%) sub-dataset even considering the strange objects, not-clarity, and black sections in some images analyzed. The general achieved classification Accuracy, Precision, Sensitivity, and Specificity percentages of the proposed method are 99.33 %, 94.16 %, 92.9 %, and 99.63 %, respectively. In particular, the skin lesions related to Basal Cell Carcinoma, Seborrhoeic Keratosis, and Melanocytic Nevus present the best performance regarding the Receiver Operating Characteristics, while the Pyogenic Granuloma was the worst classifiedes_ES
dc.description.sponsorshipIEEE Accesses_ES
dc.language.isoen_USes_ES
dc.relation.ispartofseriesvol. 9;-
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectArtificial neural networkses_ES
dc.subjectBiomedical computinges_ES
dc.subjectImage processinges_ES
dc.subjectMedical diagnostic imaginges_ES
dc.subjectFourier spectral analysises_ES
dc.titleMulti-Class diagnosis of skin lesions using the fourier spectral information of images on additive color model by Artificial Neural Networkes_ES
dc.title.alternativeIEEE Accesses_ES
dc.typeArticlees_ES
dc.description.urlhttps://ieeexplore.ieee.org/document/9363122es_ES
dc.format.pagep. 35207-35216es_ES
dc.identifier.doi10.1109/ACCESS.2021.3061873-
dc.identifier.indexacionSCOPUSes_ES
dc.subject.sedeCampus Ensenadaes_ES
Aparece en las colecciones: Artículos de Revistas



Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons