Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1852
Título : Multipurpose image colorization: a novel pipeline using convolutional neural networks
Otros títulos : SPIE.DIGITAL LIBRARY
Autor : Gomez Moreno, Ivannia
Orozco Rosas, Ulises
Picos, Kenia
Rosing, Tajana
Palabras clave : Multipurpose image colorization;neural networks
Sede: Campus Tijuana
Fecha de publicación : sep-2024
Citación : Proceedings Volume 13136;
Resumen : The colorization of monochromatic images has demonstrated utility in enhancing human comprehension of images and boosting the accuracy of succeeding image-processing tasks. Nonetheless, current fully automated colorization methodologies often exhibit optimal performance based on the input image’s nature and the employed algorithms’ architectural specifics. In response to this challenge, this paper introduces a novel methodology aimed at effectively predicting the most suitable colorization model for a given input image. This comprehensive approach is characterized by exceptional accuracy across diverse datasets.
metadata.dc.description.url: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13136/3028369/Multipurpose-image-colorization--a-novel-pipeline-using-convolutional-neural/10.1117/12.3028369.short
URI : https://repositorio.cetys.mx/handle/60000/1852
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons