https://repositorio.cetys.mx/handle/60000/1852
Título : | Multipurpose image colorization: a novel pipeline using convolutional neural networks |
Otros títulos : | SPIE.DIGITAL LIBRARY |
Autor : | Gomez Moreno, Ivannia Orozco Rosas, Ulises Picos, Kenia Rosing, Tajana |
Palabras clave : | Multipurpose image colorization;neural networks |
Sede: | Campus Tijuana |
Fecha de publicación : | sep-2024 |
Citación : | Proceedings Volume 13136; |
Resumen : | The colorization of monochromatic images has demonstrated utility in enhancing human comprehension of images and boosting the accuracy of succeeding image-processing tasks. Nonetheless, current fully automated colorization methodologies often exhibit optimal performance based on the input image’s nature and the employed algorithms’ architectural specifics. In response to this challenge, this paper introduces a novel methodology aimed at effectively predicting the most suitable colorization model for a given input image. This comprehensive approach is characterized by exceptional accuracy across diverse datasets. |
metadata.dc.description.url: | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13136/3028369/Multipurpose-image-colorization--a-novel-pipeline-using-convolutional-neural/10.1117/12.3028369.short |
URI : | https://repositorio.cetys.mx/handle/60000/1852 |
Aparece en las colecciones: | Artículos de Revistas |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons