Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1855
Título : LiDAR-based classification of objects and terrain
Autor : García, Andres
Martínez, Brandon
Moroyoqui, Zaid
Orozco Rosas, Ulises
Palabras clave : machine learning;signal processing
Sede: Campus Tijuana
Fecha de publicación : sep-2024
Citación : Proceedings Volume 13136;
Resumen : This paper presents the development of a LiDAR-based object classification system using machine learning and signal processing. The proposal explores Support Vector Machines (SVM) and neural networks to classify terrain with the help of a LiDAR that scans an area similarly to how a picture is taken. This project involves the processing of data to generate a point cloud that lets us visualize the scans taken by the Light Detection and Ranging (LiDAR). The dataset was built by taking multiple scans of three types of terrain, flat, grassy, and rocky. This paper shows experimental results of machine learning models built around LiDAR-acquired data and small datasets, it also shows point cloud visualizations and a simple signal processing technique.
metadata.dc.description.url: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13136/3028632/LiDAR-based-classification-of-objects-and-terrain/10.1117/12.3028632.short
URI : https://repositorio.cetys.mx/handle/60000/1855
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons