Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/258
Título : Studies in Computational Intelligence
Título de capítulo: Environment Recognition for Path Generation in Autonomous Mobile Robot
Autor : Orozco Rosas, Ulises
Picos, Kenia
Montiel, Oscar
Castillo, Oscar
Palabras clave : Parallel evolutionary artificial potential field;Path planning;Mobile robots;Template matching;Object recognition
Fecha de publicación : 24-nov-2019
Resumen : An efficient algorithm for path generation in autonomous mobile robots using a visual recognition approach is presented. The proposal includes image filtering techniques by employing an inspecting camera to sense a cluttered environment. Template matching filters are used to detect several environment elements, such as obstacles, feasible terrain, the target location, and the mobile robot. The proposed algorithm includes the parallel evolutionary artificial potential field to perform the path planning for autonomous navigation of the mobile robot. Our problem to be solved for autonomous navigation is to safely take a mobile robot from the starting point to the target point employing the path with the shortest distance and which also contains the safest route. To find the path that satisfies this condition, the proposed algorithm chooses the best candidate solution from a vast number of different paths calculated concurrently. For achieving efficient autonomous navigation, the proposal employs a parallel computation approach for the evolutionary artificial potential field algorithm for path generation and optimization. Experimental results yield accuracy in environment recognition in terms of quantitative metrics. The proposed algorithm demonstrates efficiency in path generation and optimization.
URI : DOI: 10.1117 / 12.2237412
ISSN : 1860-9503
Aparece en las colecciones: Capítulos de Libro

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
61xQfkCiPiL.jpgHybrid Intelligent Systems in Control, Pattern Recognition and Medicine104.9 kBJPEGVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons