Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/811
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEscobedo Bravo, Lizbeth Olivia-
dc.contributor.otherLópez‐López, Víctor R.es_ES
dc.contributor.otherTrujillo, Leonardoes_ES
dc.date.accessioned2020-08-05T17:01:48Z-
dc.date.available2020-08-05T17:01:48Z-
dc.date.issued2020-05-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/811-
dc.description.abstractThe coding of observational data is commonly used to analyse and evaluate human behaviours. The technique can help researchers inform the design and impact of, for example, an Ubicomp system by studying specific behaviours of interest. There are some tools that can alleviate the burden of observational coding, like those that help to collect and organise data, but can still be error‐prone and time‐consuming. Moreover, most of these tools lack automation, requiring intense human interaction. In order to mitigate these issues, computer vision (CV) and machine learning (ML) techniques could be used to automate observational coding, but little work has focused on analysing the feasibility of such an approach, with the goal of reducing the total coding time while maintaining accuracy. In this work, we address this question by proposing an automated approach for a real‐world case study and compare it to manual coding. The study is composed of 10 videos with an average duration of 17 min each, where the goal is to determine the attention of children with autism that participate in a neurofeedback therapy session. Each video was hand‐coded by three human observers to define the ground truth and to measure the manual coding time. Results show that it is feasible to automate the coding of observational behaviours and obtain a noticeable reduction in coding time, but with a slight loss in accuracy. Moreover, we illustrate that the best solution would be a hybrid approach, using a semi‐automated system that combines human expertise and ML predictions Keywords Observational studies, Coding behaviours, Automatic coding, Computer‐Vision, Machine Learning.es_ES
dc.language.isoen_USes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectAutismes_ES
dc.subjectNeurofeedback therapy sessiones_ES
dc.titleTowards an automatic coding of observational studies: coding neurofeedback therapies of children with autismes_ES
dc.title.alternativeExpert systemses_ES
dc.typeArticlees_ES
dc.description.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.1257es_ES
dc.format.page15es_ES
dc.identifier.doihttps://doi.org/10.1111/exsy.12572-
dc.identifier.indexacionSCOPUS / JCRes_ES
dc.subject.sedeCampus Tijuanaes_ES
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons