Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/813
Título : Evolutionary correlation filtering based on pseudobacterial genetic algorithm for pose estimation of highly occluded targets
Otros títulos : Multimedia Tools and Applications
Autor : Picos, Kenia
Orozco Rosas, Ulises
Palabras clave : Pose estimation;Evolutionary correlation filtering;Template match filters;Three-dimensional pose
Sede: Campus Ensenada
Fecha de publicación : may-2021
Resumen : An accurate method based on evolutionary correlation filtering to solve pose estimation of highly occluded targets is presented. The proposed method performs multiple correlation operations between an input scene and a bank of filters designed in frequency-domain. Each filter is computed with statistical parameters of a real-world scene and a template that contains information of the target in a single pose parameter configuration. A vast set of templates is generated from multiple views of a three-dimensional model of the target, which are created synthetically with computer graphics. An evolutionary approach in the bank of filter construction for optimizing the pose estimation parameters is implemented. The evolutionary computation technique based on a pseudo-bacterial genetic algorithm yields high estimation accuracy finding the best filter that produces the highest matching score. The proposed evolutionary correlation filtering yields good convergence of the bank of filter optimization, which produces a reduction of the number of computational operations. Experimental results demonstrate the robustness of the proposed method in terms of detection performance and pose estimation of highly occluded targets compared with state-of-the-art methods.
URI : https://repositorio.cetys.mx/handle/60000/813
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons