https://repositorio.cetys.mx/handle/60000/916
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Venegas Perez, Ivan Dario | - |
dc.date.accessioned | 2020-11-11T22:23:20Z | - |
dc.date.available | 2020-11-11T22:23:20Z | - |
dc.date.issued | 2020-11-07 | - |
dc.identifier.citation | Perez I.D.V., Montiel O., Orozco-Rosas U. (2021) Path Planning by Search Algorithms in Graph-Represented Workspaces. In: Melin P., Castillo O., Kacprzyk J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_4 | es_ES |
dc.identifier.issn | Online ISBN 978-3-030-58728-4 | - |
dc.identifier.issn | 9783030587277 | - |
dc.identifier.uri | https://repositorio.cetys.mx/handle/60000/916 | - |
dc.description.abstract | Path planning is an essential task in autonomous mobile robotics that demands to navigate following a minimum-cost path, which involves partitioning the landscape in nodes and the use of combinatorial optimization methods to find the optimal sequence of nodes to follow. Traditional algorithms such as the A* and Dijkstra are computationally efficient in landscapes with a reduced number of nodes. Most of the practical applications require to use a significantly large number of nodes up to the point that the problem might be computationally explosive. This work contributes to state-of-the-art with two heuristics for the A* algorithm that allows finding the optimal path in landscapes with a large number of nodes. The heuristics used the Euclidean and Manhattan distance in the estimation function. We present a comparative analysis of our proposal against the Dijkstra’s and A* algorithms. All the experiments were achieved using a simulation-platform specially designed for testing important algorithm features, such as the grid size, benchmark problems, the design of custom-made test sceneries, and others. Relevant results are drawn to continue working in this line. | es_ES |
dc.language.iso | en_US | es_ES |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/mx/ | * |
dc.subject | Path planning | es_ES |
dc.subject | Knowledge representation | es_ES |
dc.subject | Graph traversal | es_ES |
dc.subject | Algorithms | es_ES |
dc.title | Part of the studies in computational intelligence book series | es_ES |
dc.type | Book chapter | es_ES |
dc.contributor.aditional | Montiel, Oscar | - |
dc.contributor.aditional | Orozco Rosas, Ulises | - |
dc.subject.sede | Campus Tijuana | es_ES |
dc.publisher.editorial | Springer, Cham | es_ES |
dc.title.chapter | Path planning by search algorithms in graph-represented workspaces | es_ES |
Aparece en las colecciones: | Capítulos de Libro |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
7092.jpg | 65.56 kB | JPEG | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons