Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/916
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVenegas Perez, Ivan Dario-
dc.date.accessioned2020-11-11T22:23:20Z-
dc.date.available2020-11-11T22:23:20Z-
dc.date.issued2020-11-07-
dc.identifier.citationPerez I.D.V., Montiel O., Orozco-Rosas U. (2021) Path Planning by Search Algorithms in Graph-Represented Workspaces. In: Melin P., Castillo O., Kacprzyk J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_4es_ES
dc.identifier.issnOnline ISBN 978-3-030-58728-4-
dc.identifier.issn9783030587277-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/916-
dc.description.abstractPath planning is an essential task in autonomous mobile robotics that demands to navigate following a minimum-cost path, which involves partitioning the landscape in nodes and the use of combinatorial optimization methods to find the optimal sequence of nodes to follow. Traditional algorithms such as the A* and Dijkstra are computationally efficient in landscapes with a reduced number of nodes. Most of the practical applications require to use a significantly large number of nodes up to the point that the problem might be computationally explosive. This work contributes to state-of-the-art with two heuristics for the A* algorithm that allows finding the optimal path in landscapes with a large number of nodes. The heuristics used the Euclidean and Manhattan distance in the estimation function. We present a comparative analysis of our proposal against the Dijkstra’s and A* algorithms. All the experiments were achieved using a simulation-platform specially designed for testing important algorithm features, such as the grid size, benchmark problems, the design of custom-made test sceneries, and others. Relevant results are drawn to continue working in this line.es_ES
dc.language.isoen_USes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectPath planninges_ES
dc.subjectKnowledge representationes_ES
dc.subjectGraph traversales_ES
dc.subjectAlgorithmses_ES
dc.titlePart of the studies in computational intelligence book serieses_ES
dc.typeBook chapteres_ES
dc.contributor.aditionalMontiel, Oscar-
dc.contributor.aditionalOrozco Rosas, Ulises-
dc.subject.sedeCampus Tijuanaes_ES
dc.publisher.editorialSpringer, Chames_ES
dc.title.chapterPath planning by search algorithms in graph-represented workspaceses_ES
Aparece en las colecciones: Capítulos de Libro

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
7092.jpg65.56 kBJPEGVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons