Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/917
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Montiel, Miguel-
dc.date.accessioned2020-11-11T22:41:06Z-
dc.date.available2020-11-11T22:41:06Z-
dc.date.issued2020-11-
dc.identifier.citationLopez-Montiel M., Orozco-Rosas U., Sánchez-Adame M., Picos K., Montiel O. (2021) Evaluation of Deep Learning Algorithms for Traffic Sign Detection to Implement on Embedded Systems. In: Melin P., Castillo O., Kacprzyk J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_5es_ES
dc.identifier.issnOnline ISBN 978-3-030-58728-4-
dc.identifier.issnPrint ISBN 978-3-030-58727-7-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/917-
dc.description.abstractNowadays, machine learning algorithms are trendy and are used to solve different problems of autonomous vehicles obtaining good results. Among these algorithms, deep learning has emerged as an excellent alternative to improve the results of the state-of-the-art in machine vision applications. An essential task in autonomous vehicles is the detection of traffic signs. Some metrics used for these detectors focus on assessing precision and recall. However, it is necessary to consider other factors, such as the implementation of these models on an embedded system. In this work, we implement deep learning algorithms on an embedded system to evaluate two different detection algorithms: Faster R-CNN and Single Shot Multibox Detector (SSD) with two feature extractors, ResNet V1 101 and MobileNet V1 to determine the location of traffic signs within the observed scenario. The contribution of this work focuses on evaluating the implementation of traffic sign detection systems based on deep learning algorithms on embedded systems. The experiments were achieved on the experimental embedded system board Nvidia Jetson Nano. The inference time and memory consumption of these detection systems were evaluated; they delivered good performance (81–98%) measure by average precision for each superclass (prohibitory, warning, and mandatory).es_ES
dc.language.isoen_USes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectTraffic sign detectiones_ES
dc.subjectDeep learninges_ES
dc.subjectComputer visiones_ES
dc.subjectAutonomous vehicleses_ES
dc.subjectObject detectiones_ES
dc.subjectEmbedded systemses_ES
dc.titlePart of the studies in computational intelligence book serieses_ES
dc.typeBook chapteres_ES
dc.contributor.aditionalOrozco Rosas, Ulises-
dc.contributor.aditionalSánchez-Adame, Moisés-
dc.contributor.aditionalPicos, Kenia-
dc.contributor.aditionalMontiel, Oscar-
dc.subject.sedeCampus Tijuanaes_ES
dc.publisher.editorialSpringer, Chames_ES
dc.title.chapterEvaluation of deep learning algorithms for traffic sign detection to implement on embedded systemses_ES
Aparece en las colecciones: Capítulos de Libro

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
7092.jpg65.56 kBJPEGVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons