
SPECIAL SECTION ON SURVIVABILITY STRATEGIES FOR EMERGING WIRELESS NETWORKS

Received March 14, 2018, accepted May 4, 2018, date of publication May 16, 2018, date of current version June 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2837624

The Maximum Uniform Message
Distribution Problem
HÉCTOR ZATARAIN-ACEVES , JOSÉ ALBERTO FERNÁNDEZ-ZEPEDA ,
AND CARLOS A. BRIZUELA , (Member, IEEE)
Department of Computer Science, CICESE Research Center, Ensenada 22860, Mexico

Corresponding author: Héctor Zatarain-Aceves (zatarain@cicese.edu.mx)

The work of H. Zatarain-Aceves was supported by the Mexican National Council on Science and Technology (CONACYT) of Mexico
through the scholarship under Grant 339307.

ABSTRACT This paper introduces the maximum uniform message distribution (MUMD) problem, which
can be present in delay-tolerant communication networks, where the destination of the messages is not
present in the network. This type of behavior arises in scenarios of natural disasters or social conflicts where
a global communication network is not available. In these scenarios, the people inside the affected area
might use their mobile devices to communicate in an opportunistic manner. During this communication,
the devices can duplicate, exchange, and gather messages with the intention of afterward delivering them
to the global communication network. A device successfully delivers all messages in its memory when
it reaches the global communication network. We model the MUMD as a computational problem and
analyze the effectiveness of the existing opportunistic routing algorithms to solve this problem. Furthermore,
we design an algorithm for the MUMD and perform experimental simulations to analyze its performance.
Our results show that the greater the number of copies of messages and the more uniformly distributed
through the network they are, the higher the probability that deliveries will be successful.

INDEX TERMS Emergency response, delay tolerant networks, maximum uniform message distribution
problem, opportunistic routing algorithms.

I. INTRODUCTION
The breakdown of the communication infrastructure caused
by unforeseen events such as natural disasters or social con-
flicts can hinder the relief work to people within the affected
area. Some initiatives that have focused on mitigating the
undesirable effect of failures in communications networks are
the following. Google crisis response [1] consists of a set of
informative tools about a natural disaster that can be helpful
for people with Internet access. These tools include public
alerts, a person finder, a crisis map, among others. The main
limitation of this system is that it is useless in the absence of
the Internet.

Twitmight [2] is a Twitter client for mobile devices with a
disaster mode (activated by the user) to communicate without
Internet access. Twitmight allows the transmission of tweets
by using peer-to-peer communication. It creates a mobile ad-
hoc network with the assumption that before the connectivity
loss, all the mobile devices were connected to a server to
obtain security certificates. This feature implies that new
users cannot join the network during a disaster. Another
drawback of Twitmight is that it is reactive and not proactive.

FireChat is a proprietary app for public and private
message communication that works even without Internet
access or cellular data [3]. This app has been used in sev-
eral social conflicts where the Internet and cellular networks
were censored or overloaded. Some examples are Iraq and
Hong Kong in 2014, Ecuador and Catalonia in 2015, and
more recently, at the Democratic National Convention in
Philadelphia, USA in July 2016.

Other research efforts focus on analyzing different types
of network technologies to determine which is the best to
mitigate the lack of communication in post-disaster scenar-
ios and to help the emergency response [4]–[8]. In general,
delay tolerant networks (DTNs) or opportunistic networks
(OPNETs) [9], [10] are suitable options to achieve this goal.
The main purpose of DTNs is the dissemination of messages
and the resource optimization of the network [11], [12].

In networking, a routing algorithm involves message trans-
mission from a source to a destination. However, in some
particular scenarios such as natural disasters or social con-
flicts, the destination may be not available temporarily in the
network. For such scenarios, it is necessary to change the

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

28447

https://orcid.org/0000-0003-2899-2198
https://orcid.org/0000-0002-7847-6362
https://orcid.org/0000-0003-4621-0380

H. Zatarain-Aceves et al.: MUMD Problem

paradigm of conventional routing to one that increases the
probability that a message eventually reaches its destination.

One way to accomplish this task is by making copies of the
message and distributing them across the network, ensuring
that every vertex has a copy of themessage. Since the location
of the destination vertex is unknown, the above procedure
intents to take the message ‘‘closer’’ to its destination; how-
ever, some aspects hinder fulfilling this objective, examples
of them are the following.

If the network intends to transmit several messages and
many of their destinations are not present, the previous
approach might generate too many copies, overloading the
communication channels, and decreasing the performance of
the network, causingwell-known problems, such as broadcast
storms [13].

Because, for some applications, various network resources
(storage capacity, bandwidth, battery, etc.) are quite limited,
several vertices will compete for them when they try to max-
imize the number of copies of their messages. It is desirable
to design a mechanism that restricts the generation of copies
of each message to control this conflict of interest. Such a
mechanism will also help to avoid network overloading.

Additionally, for this type of scenario in distributed sys-
tems, it would be unpractical to limit the number of copies
by using a centralized entity. Thus, a distributed approach
in which the controller makes decisions based only on local
information seems to be more appropriate.

Taking into accounts these issues, in the following sub-
section, we describe a system that can help to temporarily
mitigate the lack of conventional communication networks.

A. CONTRIBUTION OF THIS RESEARCH
This paper introduces the Maximum Uniform Message Dis-
tribution (MUMD) problem. Roughly speaking, the input to
this problem is a dynamic graph with a set of messages stored
in its vertices. The output for this problem is a distribution
of copies of all the messages on the vertices of the network
that maximizes the number of copies of eachmessage, subject
to the following restrictions. First, all the messages have the
same number of copies in the network. Second, there is at
most one copy of each message in each vertex. We modeled
the MUMD as a computational problem, and to the best of
our knowledge, this work is the first research paper to study
this type of problem.

Our motivation to study the MUMD is that a solution for
this problem can be useful for implementing a provisional
communication network, based on wireless mobile devices,
to temporarily replace traditional communication networks
when they fail. This alternative network could allow the
survivability of the network for successful delivery (to make
a message from the affected area reach a functioning com-
munication network). Although, the notion of survivability
is not new, this issue is not entirely explored for mobile
devices [14].

Additionally, we propose EDEN (Estimate, Disseminate
and EmeNd copies), an opportunistic routing algorithm,

which generates an approximate solution for the MUMD.
Each mobile device executes EDEN in the provisional net-
work to maximize the probability to successfully deliver a
message. Finally, We analyze the performance of EDEN
through numerical simulations.

B. CONTENTS OF THIS PAPER
The organization of this paper is as follows. Section II
describes previous work related to opportunistic routing
protocols. Section III formally describes the MUMD and
introduces an application scenario. Section IV describes
the EDEN algorithm. Section V describes the experimental
design. Section VI discusses the results of the experimental
simulations. Finally, Section VII presents various concluding
remarks and ideas for future work.

II. RELATED WORK
This section contrasts the advantages and drawbacks of some
existing routing algorithms for DTNs when we attempt to use
them to solve the MUMD.

In the literature, there exist some routing protocols that can
be useful, with some modifications, as an attempt to solve
the MUMD. Many of them were designed for opportunistic
networks. However, to the best of our knowledge, there is not
any protocol that by itself solves the MUMD.

Existing routing protocols have adopted several types
of forwarding strategies for relay selection, such as pure
opportunistic, probabilistic or predictive-based, and social-
based. The probabilistic or predictive strategy such as
PROPHET [15], MaxProp [16], and MoVe [17] obtain
promising results under specific scenarios [4], [18].

Because the MUMD assumes that the destination
vertex is unknown or not available, a straightforward imple-
mentation of probabilistic or social-based routing algo-
rithms is not possible. These algorithms require the presence
of the destination vertex in the network to work
appropriately.

One straightforward and naive approach for attempting to
solve the MUMD is broadcasting the messages by flooding.
One example of this approach is the protocol of epidemic
flooding [19]. Unfortunately, flooding causes well-known
problems, such as broadcast storms [13], overloaded commu-
nication channels, energy inefficiency, and unrestricted data
redundancy.

Another more feasible approach that mitigates the above
problems could be controlled flooding. One example
of this mechanism is Spray and Wait (SnW) and its
variants [20]–[22]. This algorithm could generate a controlled
message distribution across the network.

SnW uses two phases. First, the spray phase restricts
each vertex to generate only L copies of its message. This
phase has two modes. In the simple mode, the source vertex
sends one copy to L different vertices. In the binary mode,
the source vertex sends Li copies to the i-th different vertex,
where L0 = L and Li = d

Li−1
2 e for 1 ≤ i ≤ dlogLe. Second,

in the wait phase, each vertex with a single copy inhibits the

28448 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

transmission of this message until it contacts the destination
vertex.

SnW uses a parameter that depends on the number of
vertices (assuming that each vertex knows the total number of
vertices, n, in the network), which is a strong assumption in
distributed computing systems [23]. SnW works by initially
limiting the number of copies of each message to L. The
suitable value for L depends on the application scenario;
however, Spyropoulos et al. [24] suggest that for SnW with
the binary mode, L should be between 10% to 15% of n.
The EDEN algorithm (see Section IV) does not assume that

each vertex knows the parameter n. Furthermore, it does not
require the presence of any specific destination vertex in the
network. EDEN is a variation of SnW.

III. THE MUMD PROBLEM
This section formally defines the MUMD as a computational
problem, i.e., as a relation between the input and the output.
It also presents the application scenario and how to map the
MUMD to such a scenario.

A. FORMAL DEFINITION OF THE MUMD
The input of the MUMD is an edge-dynamic undirected
graph, defined by G =

{
G0,G1, . . . ,Gφ−1,Gφ

}
, where in

each undirected graph,Gj =
(
V ,Ej

)
, |V | = n, and Ej 6= Ej+1

for all j ≥ 0. Additionally, |Ej| 6= 0 for all j 6= 0 (G0 is a graph
with no edges). Each vertex v ∈ V has a message mv and a
memory array bv with the capacity to store κv messages.
At time slot j, nodes u and v can communicate if (u, v) ∈ Ej.

Let Ci,j be the set of copies of message i immediately after
time slot j, for 1 ≤ i ≤ n. Let Mj be the multiset of all
messages in the vertices of V in graph Gj immediately after
all the possible message transmissions occur through edges
of Ej, i.e.,Mj =

⋃n
i=1 Ci,j. Let K be the maximum number of

messages that V can store, i.e., K =
∑n

j=1 κj.
Let C = min{|Ci,φ |} for all 1 ≤ i ≤ n, i.e., the number of

copies of the message that has the minimum number of copies
in Gφ .

The output of theMUMD is amultiset of messagesMφ that
maximizes C subject to the following restrictions:

1) The number of copies |Ci,φ | is the same for all i.
2) There is at most one copy of each message in each

vertex.

B. APPLICATION SCENARIO
Assume that there is a group of people in the affected area
(without global communication) that have mobile communi-
cation devices. All of them want to send a message outside of
the affected area (see Fig. 1a). Any pair of them canwirelessly
communicate with each other via their devices if they are
close enough (defined by the communication interface of
their devices). In these encounters, these devices exchange
copies of their messages to increase the probability of suc-
cessful deliveries. The more copies they make, the higher the
probability of successful deliveries. Eventually, somebody,

FIGURE 1. Three different levels of abstraction of the same scenario.
(a) The application scenario of the MUMD, where there are a group
of 16 people that have mobile communication devices in an area without
global communication as described in Subsection III-B. (b) An example of
input for the MUMD problem for the application scenario (described in
Subsection III-C) that represents the set of all contact patterns between
the 16 vertices. (c) A simulation scenario in the ONE simulator using an
area with a map (described in Subsection V-C2) and 16 vertices.

somehow, could exit the affected area and access a global
communication network with his/her mobile device. In this
way, the mobile device can successfully deliver all the mes-
sages stored in it.

To maximize the probability of a successful delivery for
each message, the communication protocol of this provi-
sional network would try to generate as many copies of each
message as possible. This characteristic of the protocol is
consistent with the maximization objective of the MUMD.
At the same time, it has to eliminate the conflict of interest
among the individuals. Because the sum, K , of the storage
capacity of all the devices of the network is limited, this
protocol restricts the number of copies L for each message to
approximately bKn c. This second characteristic of the protocol
is congruent with the first restriction of the MUMD. Notice
that in this scenario, it would be useless to havemore than one

VOLUME 6, 2018 28449

H. Zatarain-Aceves et al.: MUMD Problem

copy of a message in a device. For this reason, the protocol
of the provisional network takes care of this issue. This third
characteristic of the protocol is congruent with the second
restriction of the MUMD.

Consequently, the communication protocol uniformly dis-
tributes messages over the entire network and uses the maxi-
mum possible storage capacity of the devices.

C. MAPPING THE MUMD TO THE APPLICATION
SCENARIO
We model the application scenario with a dynamic graph.
Some works use dynamic graphs to model dynamic
networks [25], [26]. A dynamic graph changes its set of
edges at any time t . Each vertex of this graph represents an
individual with a mobile device (see Fig. 1b). This scenario
assumes that the number of individuals is always n, so the
number of vertices does not change in the graph.

Each edge in the graph, at time t , represents a contact
between two mobile devices that can communicate (i.e., their
distance in the application scenario is smaller than a given
communication radius defined by their communication inter-
face). Each communication contact is a consequence of the
movement pattern of the individuals across the affected area
in the application scenario. For this reason, the graphmodifies
its set of edges when the communication contacts change
(i.e., the dynamic graph captures the movement of the indi-
viduals), as shown in Fig. 1b.

In this scenario, a vertex’s capacity to store messages is
proportional to the storage capacity of the mobile device that
it represents.

Our assumptions for the communication model of this
application scenario are the following:

1) All the vertices have the same communication inter-
face.

2) Each vertex has a limited storage capacity to store
messages.

3) Transmission opportunities are limited in duration and
bandwidth (according to the movement model).

4) The vertices have no control over their movement.
5) The vertices have no a priori knowledge of the network

size and connectivity.
6) The vertices do not know their geographic locations.

IV. EDEN ALGORITHM
This section describes the EDEN algorithm, its message
exchange process, and its corresponding pseudocode. We use
the ‘binary transmission tree’ to describe the message
exchange process.

The EDEN algorithm spreads copies of the messages
across the network considering the overall memory capacity
of all the vertices in the network. The main idea of this
algorithm is to allow bounded message replication (bounded
to a suitable number of copies) of each message according
to the global memory capacity in the network. The following
subsection explains the message properties and the message
spreading mechanism of this algorithm.

A. MESSAGE PROPERTIES FOR EXCHANGE
Each message mv generated by vertex v has the following
properties:
• mv.pnc indicates the permitted number of copies for
message mv.

• mv.sign is a binary suffix common to a set of copies of a
message used in the message exchange process. We call
this binary suffix the signature.

• mv.updated indicateswhethermv.pncwas updated or not.
• mv.avIds is a sorted list of the available copy identifiers
for message mv. A vertex can generate this list by using
the values of mv.sign and mv.pnc (see Subsection IV-B).

• mv.id indicates the unique identifier of a message in
binary format.

• mv.anc indicates the available number of copies for
message mv.id .

Notice that a message only has to store the first three
properties described above because, with them, a vertex can
generate the others. The following subsection illustrates the
message exchange process in the ‘binary transmission tree.’

B. BINARY TRANSMISSION TREE
The procedure to make copies of the messages in the
EDEN algorithm is amodified version of the spray phasewith
the binary mode of the SnW algorithm. This process is the
following.

We define the ‘binary transmission tree’ to graphically
illustrate the transmission process of message mv over time,
as shown in Fig. 2. The binary transmission tree (BTT) is a
binary tree that has at most (2x − 1) BTT nodes, where x is
the number of available copies for message mv.

FIGURE 2. Example of the message replication tree for a single
message mv .

Each left child of the BTT relates to the same vertex as
its parent (the transmitter). Alternatively, each right child
associates with the vertex that receives a copy of the message

28450 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

(the receiver). Each BTT node has a unique identifier speci-
fied by its signature.

Given a binary alphabet 6 = {0, 1}, 6n denotes the set of
all binary strings over 6 of bit-length n. For example, 62

=

{00, 01, 10, 11}. Note, in Fig. 2, that6i is the set of signatures
of all BTT nodes at level i. The maximum level of a BTT
of size x is log x. The expression in (1) computes the set of
signatures for the BTT nodes of a BTT of size x using the
Kleene star [27] on 6.

6∗ =

log x⋃
i=0

6i (1)

where 6i
= {0, 1}i. Each BTT node represents a copy of

message mv. Note, in Fig. 2, that each BTT node contains
various attributes, as explained next. The label inside the
BTT node represents the id of the vertex that stores the copy
of the message mv. The number above each BTT node is the
number of copies that the present copy can generate. The
binary number below each BTT node represents the signature
of the copy it stores. The level of a vertex is the number of
relayed copies of that specific copy. The number on the right
of each BTT node indicates the time at which the protocol
generated/updated the signature of the copy. Next, we explain
the generation process of the BTT for message mv.
Now, assume that in the following contacts none of the con-

tacted vertices have message mv and that they have enough
available memory space to store message mv.
In general, let ρ be the signature of an internal BTT node.

Let the signatures of its left and right children be lc(ρ) and
rc(ρ), respectively. Then, lc(ρ)← 02 •ρ and rc(ρ)← 12 •ρ,
where the symbol ‘•’ indicates the concatenation of
two strings.
Example 1:Assume that x is a power of two and that at time

t = t0, vertex v creates the initial copy of message mv, with
mv.pnc = x and mv.sign = ∅ (the root of the BTT always has
the signature ∅; see Fig. 2).

Assume that in the network vertex v contacts vertex u, and
v transmits message mv to u. Then, in the BTT, the BTT node
with the signature ∅ generates two new BTT nodes, lc(∅)
and rc(∅), with the signatures lc(∅) ← 02 • ∅ = 02 and
rc(∅)← 12 •∅ = 12, both generated at time t = t1. In Fig. 2,
the twoBTT nodes at level 1 represent these two copies stored
in vertices v and u.

Similarly, assume that in the network vertex v contacts
vertex w, and v transmits message mv to w. Then, the
BTT node with the signature 02 generates two new BTT
nodes, lc(02) and rc(02), with the signatures lc(02) ← 02 •
02 = 002 and rc(02) ← 12 • 02 = 102, both generated at
time t = t2. The construction process of the BTT ends when
it completes x leaves (i.e., after x − 1 transmissions of the
message mv).

In general, any vertex with signature ρ is able to generate
all the copies of messages mv whose identifiers, between
0 and x − 1, end with the suffix ρ. Specifically, after gen-
erating BTT nodes lc(ρ) and rc(ρ), each of them is able to

generate all the copies whose identifiers are between 0 and
x−1 and that endwith the suffix 02•ρ and 12•ρ, respectively.
In the network, the transmitter keeps half of the available
copies, and the receiver keeps the other half.

Initially, the number of permitted copies (mv.pnc) is equal
to the number of available copies (mv.anc). The available
number of copies decreases at half at each message trans-
mission, i.e., mv.anc = mv.pnc/2length(ρ), where length(ρ)
denotes the number of bits (number of message transmis-
sions) in ρ. The permitted number of copies (mv.pnc) keeps
the same value at each message transmission. It only changes
at the time the estimator converges (see Subsection IV-D).
The following subsection explains how to compute the per-
mitted number of copies x used in the BTT and the message
exchange process.

C. ESTIMATOR OF THE EDEN ALGORITHM
The SnW algorithm uses a fixed value L for all the vertices
to limit the number of copies of each message. Meanwhile,
the EDEN algorithm uses, for vertex v, a parameter lv(t) as
a time-dependent local estimator of the optimum number of
copies, L ′.
Specifically, at time t = 0, vertex v initializes its local

estimator to lv(0) = κv. The EDEN algorithm regularly
updates lv(t) during the execution of the algorithm by using
the information collected from the local estimators of con-
tacted vertices. This algorithm gradually adjusts each lv(t)
until it approaches L ′, i.e., as time t → ∞, lv(∞) → L ′.
Previous works use a similar approach called distributed
averaging [28], [29].

When a contact occurs between vertices v and u at time
t = tk , these vertices update their local estimators as follows:
lv(tk) = lu(tk) =

(
lv(tk−α)+ lu(tk−β)

)
/2, where lv(tk−α)

and lu(tk−β) are the previous values of the local estimators
of v and u, respectively.

Each vertex uses an array called historic to store the
historic.size most recent values of its local estimator. The
local estimator is stable if the difference between the current
value of the local estimator and each of the elements in the
historic array is less than a predefined ε. Subsection IV-E1
explains the operation of this array.

Assume that at time t = tσ , the estimator lv(tσ) is
stable. Then, at time t = tσ , vertex v removes from its
memory each message whose copy number is greater than
lv(tσ). Additionally, vertex v incentives the creation of new
copies of each message whose copy number is smaller
than lv(tσ). The following subsection explains these two
mechanisms.

D. UPDATING THE PERMITTED NUMBER OF COPIES
When a vertex v detects that its estimator lv(t) is stable,
v compares lv(t) against mr .pnc for all the messages mr
stored in v. When they differ, vertex v performs the following
mechanisms for each message in its memory. From now on,
for simplicity, we refer to lv(t) as lv.

VOLUME 6, 2018 28451

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 3. Examples of properties and binary identifiers for message mr . Numbers in bold are the updated values. (a) Copy promotion.
(b) Copy depuration.

1) COPY PROMOTION
If mr .pnc < lv, then message mr requires more copies.
To achieve this, v replaces mr .pnc with the value of lv. For
the algorithm, this change is transparent (i.e., it does not need
to perform any special action to generate the extra copies
for mr).
Example 2: Assume that a vertex v contains a

message mr with a permitted number of copies equal to 8
(i.e., mr .pnc = 8) and mr .sign = 002. Also assume that v
detects that lv = 16 is stable. From these values, vertex v
computes mr .anc = 2 and mr .avIds = [0002, 1002]; i.e., all
the binary identifiers from 0002 to 1112 with suffix 002
(see the left side of Fig. 3a). Updating the value of
mr .pnc from 8 to 16 means that there should now
be 16 copies of message mr with identifiers from
00002 to 11112. Note that from these 16 identifiers, there
are 4 with suffix 002. Therefore, it results in more avail-
able copies of mr in vertex v; i.e., mr .anc = 4 and
mr .avIds = [00002, 01002, 10002, 11002] (see the right side
of Fig. 3a).

2) COPY DEPURATION
If mr .pnc > lv, then mr was allowed an excessive number
of copies. To correct this excess, the algorithm executes one
of the following two cases for each message. Similar to copy
promotion, the first case only updates the permitted number
of copies, while the second case detects that the copy of the
message is one of the surplus and then removes it.

• Case a: If (lv − 1)2 ≥ mr .sign, then vertex v replaces
mr .pnc with the value of lv and allows the procedure of
message exchange to work normally.

• Case b: If (lv − 1)2 < mr .sign, then vertex v removes
the message mr .

Example 3: Assume that a vertex v contains a message
mr with mr .pnc = 16 and mr .sign = 112. Also assume
that v detects that lv = 5 is stable. Then, vertex v per-
forms Case a of the copy depuration mechanism. Before
the execution of the copy depuration procedure, mr .avIds =
[00112, 01112, 10112, 11112]; i.e., all the binary identifiers
from 00002 to 11112 with suffix 112 (see the left side of
Fig. 3b). After executing the copy depuration procedure,
mr .avIds = [00112]; i.e., all the binary identifiers from 00002
to 00112 with suffix 112 (see the right side of Fig. 3b).

E. PSEUDOCODE OF EDEN ALGORITHM
Pseudocode 1 describes the EDEN procedure for vertex v.
Each vertex v in the network locally executes this procedure.
The EDEN procedure receives two integer values as input,
historic.size and ε, to evaluate the convergence of the estima-
tor. The description of Pseudocode 1 is the following.

Step 1 initializes the estimator lv equal to the value of the
memory capacity of vertex v. Step 2 initializes the Boolean
flag stable, which indicates whether lv is stable or not. Step 3
initializes the historic array that contains the historic.size
most recent values of lv. Step 4 initializes a counter that
indicates the number of insertions in historic. In Step 5,
vertex v waits until it detects the presence of some vertex u

28452 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

Pseudocode 1 EDEN
Input: The historic.size ∈ N and a positive constant ε for

the estimator values.
1: lv← κv
2: stable← false
3: historic[0]← lv
4: counter ← 1
5: while ∃ u in communication range with v do
6: UPDATE-ESTIMATOR()
7: UPDATE-MESSAGES()
8: sv (2)← CREATE-AVAILABLE-SUMMARY(2)
9: TRANSMIT(sv (2))
10: su (2)← RECEIVE()
11: r ′v,u← CREATE-REQUESTED-SUMMARY(su (2))
12: TRANSMIT(r ′v,u)
13: r ′u,v← RECEIVE()
14: EXCHANGE-MESSAGES(r ′v,u r

′
v,u)

15: end while

in its communication range. When v detects such a vertex u,
v verifies that u is not busy transmitting to another vertex.
If u is available, then the data exchange process starts between
both vertices (Steps 6 through 14). In Step 6, v updates its
local estimator (see Pseudocode 2). In Step 7, v updates the
messages in its memory (see Pseudocode 3). In Step 8, v gen-
erates its ‘available message summary’ (see Pseudocode 4).
In Steps 9 and 10, v transmits this summary to u and
receives the summary from u, respectively. In Step 11, v com-
putes its ‘requested message summary’ (see Pseudocode 5).
In Steps 12 and 13, v transmits this summary to u and receives
the summary from u, respectively. In Step 14, v transmits all
themessages requested by u and receives all themessages that
it requested from u (see Pseudocode 6). Next, v continues the
execution at Step 5 of Pseudocode 1.
Remark 1: The vertex with the smallest identifier takes

the lead of the communication channel. In this explanation,
we assume that the identifier of vertex v is smaller than that
of u.

1) UPDATE-ESTIMATOR PROCEDURE
In the Update-Estimator procedure, vertex v evaluates
if lv becomes stable as described in Subsection IV-C.
Pseudocode 2 describes this procedure.

The EDEN algorithm uses the historic array as a circular
queue to store the historic.size most recent values of lv.
This array computes the value (counter mod historic.size) to
determine the position in the array where the following value
of lv is going to be stored. The description of Pseudocode 2
is the following.

Step 1 evaluates if lv is not stable. If lv is already stable,
then this step exchanges the estimators and exits; otherwise,
continue to Step 2. In Steps 2 and 3, v transmits its local esti-
mator lv to u and receives the estimator lu from u, respectively.
Step 4 replaces the estimator lv. Step 5 evaluates if lv is stable.
If it is not, the procedure inserts this value in the historic

Pseudocode 2 UPDATE-ESTIMATOR
1: if stable = false then
2: TRANSMIT(lv)
3: lu← RECEIVE()
4: lv← (lv + lu)/2
5: if counter ≥ historic.size and |lv − historic[i]| ≤
ε, ∀i ∈ [0, historic.size− 1] then

6: stable← true
7: else
8: historic[counter mod historic.size]← lv
9: counter ← counter + 1
10: end if
11: end if

Pseudocode 3 UPDATE-MESSAGES
1: if stable = true then
2: for all message mr in bv do
3: if mr .pnc > lv and mr .sign > (lv − 1)2 then
4: remove message mr from bv
5: else if mr .updated = false then
6: mr .pnc← stochastic_round(lv)
7: mr .updated ← true
8: end if
9: end for
10: end if

array, updates the counter variable, and exits (Steps 8 and 9).
If lv is stable, then Step 6 sets stable to true.

2) UPDATE-MESSAGES PROCEDURE
In the Update-Messages procedure, vertex v updates the
messages in its memory according to the procedure
described in Subsection IV-D. Pseudocode 3 describes this
procedure.

Step 1 evaluates if lv is stable. If lv is already stable,
then continue to Step 2; otherwise, exit this procedure.
Steps 2 through 9 evaluate and update the available number
of copies of each message in the buffer of v, as explained in
Subsection IV-D, and exit. The number of copies must be an
integer value; hence, in the case that lv converges to a non-
integer value, Step 6 rounds this value via stochastic round-
ing, e.g., if the fractional part of lv is 0.6, choose randomly
among lv + 0.6 and lv − 0.4, with probabilities 0.6 and 0.4,
respectively.

3) CREATE-AVAILABLE-SUMMARY PROCEDURE
The Create-Available-Summary procedure receives as
input an integer x and outputs a summary of messages
in vertex v, called sv(x). Pseudocode 4 describes this
procedure.

Let bv.size be the number of messages stored in bv. Let
sv(x) be the set of identifiers of the messages that have at
least x available copies in vertex v, e.g., sv(1) is the set of
identifiers of all the existing messages in bv. Notice that
bv.size = |sv(1)|. We assign the name available message

VOLUME 6, 2018 28453

H. Zatarain-Aceves et al.: MUMD Problem

Pseudocode 4 CREATE-AVAILABLE-SUMMARY
Input: A value x ∈ N, representing the minimum remaining

copies of each message in the summary to be generated.
1: sv(x)← ∅
2: if bv.size > 0 then
3: for all message mr in bv do
4: if mr .anc ≥ x then
5: sv(x)← sv(x) ∪ mr .id
6: end if
7: end for
8: end if
9: return sv(x)

Pseudocode 5 CREATE-REQUESTED-SUMMARY

Input: A set su(2), representing the summary of the available
messages of the other vertex.

1: sv(1)← CREATE-AVAILABLE-SUMMARY(1)
2: rv,u← su(2) \ sv(1)
3: if |κv − bv.size| < |rv,u| then
4: α← (|rv,u| − |κv − bv.size|)
5: randomly remove α elements of rv,u
6: end if
7: return rv,u

summary to the set sv(2), i.e., the set of identifiers that have
at least two available copies (one to keep and one to send).
Notice that sv(2) ⊆ sv(1).

Step 1 initializes the summary, and Step 2 checks if there is
at least one message in the memory of v; if so, Steps 3 through
7 evaluate the number of available copies (mr .anc) of each
message mr in bv. If mr .anc is at least x, then the procedure
adds mr to the summary. Finally, Step 9 returns the requested
summary.

4) CREATE-REQUESTED-SUMMARY PROCEDURE
In the Create-Requested-Summary procedure, vertex v builds
rv,u, the requested message summary of v, i.e., the set of
identifiers of the messages that v requests from u. Notice that
rv,u ⊆ su(2)\sv(1). Let rv,u be at most |κv−bv.size| identifiers
randomly chosen from the set {su(2) \ sv(1)}.

This procedure receives as input the set su(2). Step 1
computes the set sv(1) with Pseudocode 4. This set con-
tains the identifiers of all the existing messages in the
memory of v. Step 2 obtains rv,u, the set of identi-
fiers of all the available messages in u that v does not
have. Steps 3 through 6 randomly choose from the set
{su(2) \ sv(1)} the identifiers of those messages that bv is
able to store. Finally, Step 7 returns the requested message
summary.

5) EXCHANGE-MESSAGES PROCEDURE
The Exchange-Messages procedure exchanges those mes-
sages specified by rv,u and ru,v between v and u. Pseudocode 6
describes this procedure.

Pseudocode 6 EXCHANGE-MESSAGES
Input: A pair of sets rv,u, ru,v, representing the requested

messages of each vertex.
1: if |ru,v| > 0 then
2: for all mr .id in ru,v do
3: TRANSMIT(mr)
4: mr .sign← 0 • mr .sign
5: end for
6: end if
7: if |rv,u| > 0 then
8: for all mr .id in rv,u do
9: mr ← RECEIVE()
10: mr .sign← 1 • mr .sign
11: store message mr in bv
12: end for
13: end if

When vertex v sends (receives) a message mr to (from) u,
it updates the signature mr .sign of mr . To update mr .sign,
vertex v concatenates a zero bit (one bit) in the most signif-
icant bit of mr .sign. Subsection IV-B describes this update
procedure.

F. EDEN WITH WARM-UP ALGORITHM
TheEDENwith warm-up (EDENwu) algorithm is a simplified
version of EDEN. During the first stage (the warming-up),
each vertex v only exchanges its estimator and is allowed to
receive messages. Vertex v ends this stage when its estimator
converges. During the second stage, each vertex v starts the
message exchange procedure as in EDEN, but it ignores
the estimator update, copy promotion, and copy depuration
procedures. Notice that EDEN executes these two stages
simultaneously.

The main reason to introduce EDENwu was to analyze
which strategy has better performance:
• EDEN strategy: starting the transmission of messages
with an estimator likely to be far from L ′ and requiring
an additional mechanism for correcting the number of
generated messages.

• EDENwu strategy: starting the message transmission
after computing an estimator very close to L ′ and with-
out requiring any a posteriori correction in the number
of generated messages.

The pseudocode for EDENwu is the same as that of EDEN
except for the following minor changes in Pseudocodes 1
and 6. In Pseudocode 1, insert before Step 6 the validation
‘‘if stable = false’’ and insert the line ‘‘end if’’ just after
Step 7. Additionally, in Pseudocode 6, insert before Step 1 the
validation ‘‘if stable = true’’ and insert the line ‘‘end if’’ just
after Step 6.

V. EXPERIMENTAL DESIGN
This section presents the experimental design used to com-
pare the performances of the algorithms used for the MUMD.
This experimental design applies to all the experiments.

28454 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

A. METRICS FOR PERFORMANCE EVALUATION
The opportunistic routing protocols use mechanisms to
improve several performance metrics, such as throughput,
delivery ratio, storage usage, battery lifetime, information
spreading [25], among others. However, most of thesemetrics
are meaningless or inadequate in the context of the MUMD,
(e.g., the most relevant metrics are delivery ratio and aver-
age message delivery latency, but both cannot be computed
without a destination). For this reason, we introduce a set of
metrics that are suitable to measure the quality of the output
generated by the algorithms that intend to solve the MUMD.

The purpose of these metrics is three-fold. First, to evaluate
the uniformity in the number of copies of each message.
Additionally, to measure the memory usage of all the vertices
in the network. Finally, to compute the number of vertices that
must be selected at random to obtain at least one copy of each
message. The following subsections describe these metrics.

1) RELATIVE UNIFORMITY FACTOR
The Relative Uniformity Factor (RUF) evaluates the unifor-
mity of the numbers of copies of the messages in the network.
The RUF is equal to the product of the numbers of copies of
all the messages divided by the average of these numbers,
as shown in (2).

RUF =
n∏
i=1

Ci
C̄
, (2)

where Ci is the number of copies of message i in the network
and C̄ is given by (3).

C̄ =
n∑
i=1

Ci
n

(3)

One property of this metric is that the higher the uniformity
of the numbers of copies is, the greater the value of the RUF is.
The RUF obtains its maximum value when the numbers of
copies of all the messages are the same. In such a case,
the value of the RUF is equal to one. When the number of
copies of a message is zero, the value of the RUF is zero, its
minimum possible value.

2) MEMORY UTILIZATION FACTOR
The Memory Utilization Factor (MUF) measures the occu-
pancy of messages in the memory of all the vertices in the
network. The MUF is equal to the sum of the total number of
messages in the network divided by the maximum capacity
of storage K in the network, as shown in (4).

MUF =
n∑
i=1

Ci
K

(4)

The value of the MUF varies between zero and one and is
proportional to the percentage of the storage capacity of the
network that has been used to store messages.

3) NUMBER OF DRAWS TO OBTAIN THE COLLECTION
OF MESSAGES
This metric indicates the average number λ of vertices
that are necessary to select from the network to obtain the
set�n. We call�n the set of all the messages in the network.
This metric assumes a random selection without replacement
and with a uniform distribution. It also assumes that each
selected vertex transmits all the messages in its memory to
their destinations.

In the application scenario, the selected vertices represent
those mobile devices that could exit the affected area and
manage to contact a global communication network.

The parameter λ can take any value between {2, . . . , n}
since we are assuming that κv < n for all v. Notice that the
lower the value of λ is, the better.

From this formulation, some interesting questions are the
following: First, what is the average number of vertices that
must be selected to obtain α·|�n| different messages for some
constant 0 < α < 1? Second, what is the value of λ if we
assume an optimal uniform distribution of messages in the
network? Notice that this is the best value that, on average,
the best algorithm for the MUMD can obtain. Given the
output of the MUMD Mφ , we experimentally measured λ.
Remark 2: The context of this metric is similar to

a variation of the coupon collector problem with group
drawings [30], [31].
Remark 3: The plots of Figs. 9, 12, 14, 15, 16, 17 and 19

use λ/n rather than λ since it is easier to compare the results
of the experiments for various values of n. We call the ratio
λ/n Normalized Average Number of Draws (NAND).

It is worth noting that the metrics RUF and MUF are good
indicators of the copy uniformity of messages and the mem-
ory utilization, respectively; however, they are not correlated
with the quality of the candidate solutions for the MUMD.
The product of the RUF and MUF (denoted by RUF×MUF)
combines the behavior of these two metrics into one single
metric. This metric and λ are correlated with the quality of
the candidate solutions for the MUMD. Moreover, for the
practical scenarios described in Subsection III-B, between
these two metrics, λ is probably the most suitable metric for
the MUMD.

4) CONVERGENCE TIME
The saturation time is the time when the storage occupancy
in the network is maximum, i.e., MUF=1. Similarly, the con-
vergence time of the network is the time when the occupancy
is maximum and, for each vertex v ∈ V , the content of bv
does not change.

B. NETWORK SIMULATOR
We performed the experiments using the Opportunistic Net-
work Environment (ONE) simulator [32] version 1.5.1 RC2.
We selected this simulator because it is open-source software,
commonly used in DTNs research works, and have several
implementations of well-known DTNs routing algorithms.

VOLUME 6, 2018 28455

H. Zatarain-Aceves et al.: MUMD Problem

TABLE 1. Simulation setup for the experiments of Scenarios A, B, C, D, and E.

FIGURE 4. Maps of the city of Ensenada, Baja California, Mexico. (a) The original map in OpenStreetMap. (b) The map generated for the
simulation.

The purpose of the computational experiments was to
compare different routing protocols using the metrics RUF,
MUF and NAND. The ONE simulator allows the represen-
tation of the scenario associated with the MUMD problem
and the implementation of the proposed algorithms. The
experiments described in this section used the parameter
settings of Table 1. We implemented the following assump-
tions in the simulation scenario to accurately simulate the
MUMD problem:

1) Each vertex generates only one message at the start of
the simulation.

2) The final message destinations are not in the network.

C. PARAMETER SELECTION
We performed preliminary experiments to determine the
appropriate parameter values of the simulator to emulate
the MUMD. Table 1 lists the parameters setup, and the fol-
lowing subsections describe them.

1) NUMBER OF VERTICES
The number of vertices, n, in the simulation area takes values
from the set {16, 32, 64, 128}.

2) AREA OF THE SIMULATION
The experimental simulations use two areas of rectangular
shape. The first area does not have spatial constraints, and
its size is 590 m × 532 m. The second area considers spatial
constraints. It corresponds to a map of the city of Ense-
nada, Baja California, Mexico (see Fig. 4), and its size is
4000 m × 3000 m.

3) COMMUNICATION INTERFACE
Bluetooth and Wi-Fi are the most common communication
interfaces used in opportunistic networks. We considered
Bluetooth because it is more widely used thanWi-Fi in oppor-
tunistic communications with heterogeneous mobile devices.
In practice, most Bluetooth devices easily achieve a transmis-
sion range of 10 m and a transmission velocity of 250 kBps,
regardless of any obstacles or interference.

4) MOBILITY MODELS
We use the ‘random waypoint’ and ‘shortest path map-based’
models implemented in the ONE simulator. The velocity
range for these models is between 0.5 and 1.5 m/s to emulate
the average human walking pace.

28456 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

The shortest path map-based model works similar to Ran-
dom Waypoint. First, it chooses a random destination point
on the map. Second, it computes the shortest path between
the current vertex location and the destination point. Finally,
it moves the vertex from its current destination to the desti-
nation through the computed path.

5) MESSAGE PARAMETERS
The message size is restricted to 1 kB. This size is useful for
a wide variety of scenarios modeled by the MUMD problem.
We assumed that each vertex generates only one message at
the time it joins the network.

6) VERTEX STORAGE PARAMETERS
Our simulation scenarios assume kv < n and three
different distributions of storage capacity for the vertices:
‘Uniform buffers’ (Ub), ‘Semi-uniform buffers’ (Sb), and
‘Non-uniform buffers’ (Nb).
• Uniform buffers. In this distribution, all the vertices have
the same buffer size, κv = n/2, i.e., each vertex can store
at most n/2 different messages.

• Semi-uniform buffers. This distribution equally divides
the set of n vertices into four groups, and the
groups have buffer sizes of n/2, n/4, n/8, and n/16,
respectively.

• Non-uniform buffers. This distribution equally divides
the set of n vertices into n/2 groups. The buffer size of
each group is i, where 1 ≤ i ≤ n/2.

We do not consider the scenarios where kv ≥ n, for
any vertex. Because it can be solved straightforward with
any routing algorithm that floods the network. A more
challenging scenario for the MUMD is when kv < n,
for all the vertices. Table 2 shows the optimal value of lv
for each buffer distribution and different numbers of
vertices.

TABLE 2. The optimal value of the estimator lv (L′) for different numbers
of vertices and buffer distributions.

7) ENERGY MODEL AND PARAMETERS
Our simulation assumes the energy model and parameter
values proposed by Rodrigues-Silva et. al. [33]. The authors
of this model measured the average energy consumption of
the Nokia E52 mobile phone using the Bluetooth interface.
They obtained that the energy consumption for scanning,
sending, and receiving files are 0.06 mW/s, 0.08 mW/s, and
0.08 mW/s, respectively. The battery capacity of this phone
is 4800 mW/s.

This energy model is suitable for our application scenario.
The ONE simulator already includes an implementation of

this model, which has been used recently in some research
works [34]–[36] with the same parameter values proposed
in [33].

We considered three different energy schemes (unre-
stricted, fully-charged, and random-charged) for the capacity
of the battery. The first scheme assumes that each vertex
has unrestricted energy. The second scheme assumes that
each vertex has a fully-charged battery at the beginning of
the simulation. The third scheme assumes that the initial
energy level of each battery is a random value with a uniform
distribution between 50% and 100% of the maximum capac-
ity. No scheme considers the possibility of recharging the
battery.

8) VERTEX MAXIMUM ARRIVAL TIME
Our simulation assumes four different vertex arrival times
schemes. These schemes assume that vertices join the
network randomly with four uniform distributions in the
intervals [0, 0], [0, 10k], [0, 20k], and [0, 40k] seconds.
In particular, interval [0, 0] means that all vertices join the
network at the beginning of the simulation.

9) SIMULATION SCENARIOS
This subsection presents five simulation scenarios. Each sce-
nario has different parameters as shown in Table 1.
• Scenario A. Buffer distributionUb and in an areawithout
spatial constraints.

• Scenario B. Buffer distribution Sb and in an area without
spatial constraints.

• Scenario C. Buffer distribution Nb and in an area with-
out spatial constraints.

• ScenarioD. Buffer distributionNb in an areawith spatial
constraints, and with/without energy restrictions.

• Scenario E. Buffer distribution Nb in an area with spatial
constraints, without energy restrictions, and three differ-
ent vertex arrival times.

The objective of ScenariosA,B, andC is to analyze the effects
of different buffer distributions. Meanwhile, Scenario D only
considers the Nb buffer distribution, with energy restrictions
(see Subsection V-C7) and using a map area (see Fig. 4) to
represent a more realistic scenario. Finally, the objective of
Scenario E is to measure the impact of the different vertices
arrival times to the network (see Subsection V-C8) when
using the same realistic scenario as Scenario D with unre-
stricted energy.

D. STATISTICAL ANALYSIS
The experiments consisted of 100 executions for each mobil-
ity model and each routing algorithm, changing the initial
random seed at each execution.We performed a statistical test
analysis of the results. First, we used the Lilliefors test [37] to
determine whether or not the experimental data have a normal
distribution. If the outcome of this test indicates that data was
not normally distributed, then we applied the Wilcoxon rank
sum test [38]; otherwise, we applied the student’s t-test to

VOLUME 6, 2018 28457

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 5. Convergence time of the estimator by using the random waypoint mobility model for Scenario C for various values of n.

determine if there exists a statistically significant difference
among the outputs.

E. COMPUTING ENVIRONMENT
Our experiments run on a Dell PowerEdge R900 with 12 Intel
Xeon processors running at 2.13 GHz, 32 GB of RAM,
and the Linux CentOS 6 operating system. We coded our
implementation in Java 1.8 and compiled it with JDK 8.

F. PARAMETERS OF THE ALGORITHMS
We compared EDEN algorithm against two well-known
opportunistic routing algorithms, epidemic flooding [19] and
Spray and Wait [20]. We did not modify any parameter of
epidemic flooding as implemented in the ONE simulator.
On the contrary, for the SnW algorithm, we set the initial
number of copies, L, equal to 15% of n.

Additionally, to compare the performances of all the pre-
vious algorithms against an ideal algorithm, we generated
the optimal number of copies (

∑ kv
n for all v) of each

message mv and randomly distributed them in the vertices.
We called this ‘‘algorithm’’ Ideal. Finally, the two versions
of the EDEN algorithm used ε = 0.5 and historic.size = 50
as initial parameters.

VI. RESULTS
This section presents the results of the simulation for all the
scenarios. First, it shows the average convergence time of the
estimator in EDEN for Scenario C, with different numbers
of vertices, and the random waypoint mobility model. Then,
it presents the results of themetrics RUF,MUF, λ, and conver-
gence time of the network for all the algorithms in Scenarios
A, B, and C. After that, it presents the results of λ and the
energy consumption time of the vertices for all the algorithms
in Scenario D. Finally, it shows the results of NAND and the
convergence time of the network for Scenario E.

A. CONVERGENCE OF THE ESTIMATOR
Fig. 5 shows the average convergence time of the estimator
for each group of buffer distribution for Scenario C and for

different values of n. These values are always lower than
8,000 seconds (approximately 2 hours). The greater the num-
ber of vertices, the shorter the estimator’s convergence time.
The plots of Fig. 5 do not significantly change by using
Scenarios A and B.

B. SIMULATION FOR SCENARIO A
This subsection presents the simulation results for ScenarioA.
Fig. 6 shows the RUF for various algorithms and values of n.
The RUF for epidemic flooding is very low for all n compared
to the other algorithms, in general, lower than 0.25. Despite
the RUF of EDEN and SnW being close to one, SnW shows
the best performance.
Remark 4: In the following figures, each notched boxplot

represents the dispersion of the data obtained from the results
of 100 executions. The bottom and top of the box are the
first and third quartiles, respectively. The line inside the
box is the second quartile (the median). The ends of the
whiskers represent the lowest (highest) datum within 1.5 IQR
of the third (first) quartile. Any data not included between the
whiskers are considered outliers.

Fig. 7 shows the MUF for various algorithms and values
of n. SnW has the worst performance for this metric, lower
than 0.4, since this algorithm gives priority to the uniformity
of messages rather than to memory utilization. In general,
the MUF values for the epidemic flooding and EDEN algo-
rithms are greater than 0.94. Particularly, epidemic flooding
always obtains approximately a value of one, i.e., it practi-
cally fills the buffers in all executions for all n, obtaining the
best performance for this metric.

Fig. 8 shows the RUF×MUF for various algorithms and
values of n. The values of this metric are similar to those of the
RUF sincemost of the values of theMUF are very close to one
for all algorithms, except for SnW. For the last algorithm, its
product is always lower than 0.38. For simplicity, we replace
the plots of MUF and RUF by RUF×MUF in the remainder
of this section.

Fig. 9 shows the NAND for the random waypoint mobility
model and various algorithms and values of n. For this metric,
the lower, the better. Because epidemic flooding replaces old

28458 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 6. RUF for Scenario A, using the random waypoint mobility model, for all algorithms and values of n.

FIGURE 7. MUF for Scenario A, using the random waypoint mobility model, for all algorithms and values of n.

FIGURE 8. RUF×MUF for Scenario A, using the random waypoint mobility model, for all algorithms and values of n.

messages by new ones in each vertex, it is possible that even
after drawing all the vertices from the network, this algorithm
fails to obtain at least one copy of each message. Fig. 9 shows

this behavior for epidemic flooding when n is equal to 16,
32, and 64, where, even after drawing all the vertices from
the network, it cannot obtain �n (i.e., λ/n = 1). The second

VOLUME 6, 2018 28459

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 9. NAND for Scenario A, using the random waypoint mobility model, for all algorithms and values of n.

FIGURE 10. Convergence time of the network for Scenario A, using the random waypoint mobility model, for all algorithms and values of n.

worst algorithm is SnW for all n. The EDEN algorithm has the
best performance among all analyzed algorithms. Moreover,
there is no significant difference in the values between Ideal
and EDEN for n = 128 vertices.

Fig. 10 shows the convergence time of the network for
various algorithms and values of n. Epidemic flooding yields
the worst results. For this algorithm, the network did not even
converge at the final simulation time for n > 16. Because
SnW transmits very few messages compared to the other
algorithms, its convergence time is the smallest, on average,
less than 7,500 seconds. For EDEN, its convergence time is
23,000 seconds, on average, for all n.
For the convergence time in Scenarios B, C, and D

with unrestricted energy scheme, the algorithms keep their
rankings which respect each other as in Scenario A.
If this type of plot included EDENwu, its performance
would be worse than EDEN. For this reason, we omit the
corresponding plots for these scenarios in the following
subsections.

C. SIMULATION FOR SCENARIO B
This subsection presents the simulation results for Scenario B
for the random waypoint mobility model. Fig. 11 shows
the RUF×MUF for various algorithms and values of n. The
product for epidemic flooding is practically zero, the lowest
for all algorithms and values of n. Then, SnW has the second
worst performance. Its product is lower than 0.8, on average,
for all n. Finally, EDEN outperforms EDENwu for all n,
except for 16, in which the opposite occurs. For n = 16, this
particular behavior is probably due to the effect of rounding
on lv, since its optimal value is 3.75 (see Table 2) and our
protocol demands an integer number of copies. When exe-
cuting EDENwu, not all of the vertices start the transmission
of their messages at the same time. Each vertex starts its mes-
sage transmissions immediately after its estimator converges.
The first vertices that transmit do not have a problem to allo-
cate all their messages; on the contrary, the last vertices that
start their transmissions rarely can allocate all their messages.
This behavior decreases the RUF×MUF.

28460 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 11. RUF×MUF for Scenario B, using the random waypoint mobility model, for all algorithms and values of n.

FIGURE 12. NAND for Scenario B, using the random waypoint mobility model, for all algorithms and values of n.

Fig. 12 shows theNAND for the randomwaypointmobility
model and various algorithms and values of n. Epidemic
flooding obtains a value of one for this metric, being the worst
for all algorithms and values of n. SnW obtains the second
worst values for all n. Its values are 10% worse than those
of EDEN and EDENwu, on average, for all n, except for
n = 16, where they are similar. The performance of EDEN is
2% better than that of EDENwu, on average, for all n, except
n = 16, in which case they are similar. There is no significant
difference in this metric between Ideal and EDEN for n = 64
and n = 128.

D. SIMULATION FOR SCENARIO C
This subsection presents the simulations for Scenario C for
the random waypoint mobility model. Fig. 13 shows the
RUF×MUF for various algorithms and values of n. The
product for epidemic flooding is practically zero, the lowest
of all algorithms for all n. SnW obtains the second lowest
product for all n. Its product is lower than 0.66, on average, for
all n. EDEN is at least 5% better than EDENwu, on average,
for all n.

Fig. 14 shows theNAND for the randomwaypointmobility
model and for all algorithms and values of n. EDEN is at least
2% better than EDENwu, on average, for all n. Furthermore,
EDENwu is at least 10% better than SnW, on average, for all n.
Finally, epidemic flooding, with a value of one for this metric,
is the worst of all algorithms.

E. SIMULATION FOR SCENARIO D
This subsection shows the results for the NAND metric in
Scenario D, which considers three different energy schemes
(see Subsection V-C7).

Fig. 15 shows the NAND for all algorithms and values
of n for the unrestricted energy scheme. Fig. 15 keeps prac-
tically the same behavior as Fig. 14 (Scenario C). Therefore,
the descriptions of Figs. 15 and 14 are the same. In the
remaining of this subsection, all the plot comparisons of
Figs. 16 and 17 are against to those of Fig. 15. Note that
SnW and epidemic flooding remain practically with the same
values for all energy schemes.

Fig. 16 shows the NAND for all algorithms and values of n
for the fully-charged battery scheme. All the plots of Fig. 16

VOLUME 6, 2018 28461

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 13. RUF×MUF for Scenario C, using the random waypoint mobility model, for all algorithms and values of n.

FIGURE 14. NAND for Scenario C, using the random waypoint mobility model, for all algorithms and values of n.

FIGURE 15. NAND for Scenario D, with unrestricted energy, for all algorithms and values of n.

maintain their values for all n, except for the following cases.
First, the performance of EDENwu decreases 13%, on aver-
age, for n = 32. Second, the performances of EDEN and

EDENwu decrease 19%, on average, for n = 16. Furthermore,
note that the performances of these two algorithms are even
worse than that of SnW for n = 16.

28462 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 16. NAND for Scenario D, with a fully-charged battery, for all algorithms and values of n.

FIGURE 17. NAND for Scenario D, with a random-charged battery, for all algorithms and values of n.

FIGURE 18. Convergence times for the unrestricted energy scheme. Energy depletion times for fully-charged energy, and random-charged
energy schemes.

Finally, Fig. 17 shows the NAND for all algorithms and
values of n for the third energy scheme. EDEN maintains the
same values for n = 128 and n = 64; meanwhile, it decreases

its performance 23% and 20%, on average, for n = 32 and
n = 16, respectively. EDENwu maintains the same values
only for n = 128; meanwhile, it decreases its performance

VOLUME 6, 2018 28463

H. Zatarain-Aceves et al.: MUMD Problem

FIGURE 19. NAND for Scenario E with different vertex arrival time intervals and n = 128.

FIGURE 20. Convergence times for Scenario E with different vertex arrival time intervals and n = 128.

19%, 37%, and 16%, on average, for n = 64, n = 32, and
n = 16, respectively.

The above cases show a notorious decrease for EDEN
and EDENwu. The reason of this decrease is because the
average convergence times of the network for the unrestricted
energy scheme (left column of Fig. 18) are greater than those
of the other two energy schemes (middle and right columns
of Fig. 18, respectively). Note that the lower the number of
vertices, the longer the convergence time. For this reason,
the loss in performance for EDEN and EDENwu is more
notorious for small values of n than for high values of n.
In particular, EDENwu is the most affected algorithm because
of the delay of its warming-up stage.

F. SIMULATION FOR SCENARIO E
This subsection presents the results for Scenario E, which
uses the same parameters as Scenario D with the unrestricted
energy scheme.

Fig. 19 shows the NAND for various algorithms, four uni-
form distributions, and n = 128. For comparison purposes,

the first column of this figure includes the results when all the
vertices join the network at the beginning of the simulation.
Our experimental results indicate that the different arrival
times practically do not affect the NAND for any algorithm.
For the above reason, this subsection omits the plots for the
other values of n.

Fig. 20 shows the convergence time for various algo-
rithms and n = 128. In general, SnW, EDEN, and EDENwu
require more time to converge, the wider the arrival range
of the vertices, the longer the convergence time of the net-
work. Particularly, EDENwu is the most affected. We con-
jecture that the delayed entrance of the vertices would have
a more negative impact in scenarios that consider energy
constraints.

VII. CONCLUDING REMARKS AND FUTURE WORK
This paper proposes a novel problem called the Maximum
Uniform Message Distribution (MUMD). This problem
arises from our attempt to mitigate a service failure
of the global communication network. To deal with

28464 VOLUME 6, 2018

H. Zatarain-Aceves et al.: MUMD Problem

this problem, we also proposed the EDEN algorithm and
a variant of it, EDENwu, to generate approximate solutions
for the MUMD. Additionally, we compared them against
two well-known opportunistic routing algorithms, namely
SnW and epidemic flooding, and against the performance
of an ideal algorithm. We performed numerical simula-
tions to evaluate these algorithms in scenarios with different
characteristics.

Note that the SnW and epidemic flooding algorithms
were not specifically designed to solve the MUMD.
SnW gives priority to the uniformity of messages rather than
to memory utilization; on the contrary, epidemic flooding
does the opposite. Meanwhile, the objective of EDEN is
to maximize both parameters; therefore, it obtains the best
performance for metrics RUF×MUF and NAND for most
scenarios.

The EDENwu algorithm is simpler than EDEN because it
avoids the copy promotion and the copy depuration proce-
dures. For this reason, it requires fewer message transmis-
sions and a longer time to achieve the convergence time of the
network than EDEN.However, in general, the performance of
EDENwu is at most 2%worse than EDEN for NAND, in most
scenarios. Furthermore, EDEN and EDENwu obtain values at
most 2% and 4% worse than an Ideal algorithm, respectively,
for NAND in Scenarios A, B, and C.
In general, for the two variants of EDEN, our experimental

results show that convergence times of both the estimator and
the network depend on the number of contacts among the
vertices of the network: the greater the number of vertices,
the shorter the convergence time.

In Scenario D, in general, the performances of EDEN
and EDENwu deteriorate as the battery capacity decreases.
The smaller the number of vertices, the higher the perfor-
mance degradation of these two algorithms. In spite of this
behavior, EDEN is the best, under the NAND criterion, for
most simulation results for this scenario. SnW and epidemic
flooding keep practically the same performance for all energy
schemes.

Notice that Scenario D with random-charged energy
scheme seems similar to a situation where all vertices grad-
ually leave the network. The depletion of a battery results
in the withdrawal of a vertex. The results in this Scenario
imply that the earlier the removal of the vertices, the worse
the performance of our proposed algorithms.

In Scenario E, the performances of the algorithms, under
the NAND criterion, are practically the same as the ones in
which all the vertices arrive at the beginning of the simula-
tion; however, the different arrival times drastically affect the
convergence times of the network.

For future work, it would be interesting to study mech-
anisms to allow EDEN to save energy, mainly because
energy supply is a major concern in disaster scenar-
ios [39]. Another interesting research direction is the
evaluation of EDEN with a mobility model that realisti-
cally represents the movements in a disaster area scenario
(e.g., [40]).

REFERENCES
[1] Google. Google Crisis Response. Accessed: Dec. 28, 2017. [Online].

Available: http://www.google.com/crisisresponse
[2] T. Hossmann, F. Legendre, P. Carta, P. Gunningberg, and C. Rohner,

‘‘Twitter in disaster mode: Opportunistic communication and distribution
of sensor data in emergencies,’’ in Proc. ExtremeCom. Manaus, Brazil,
Sep. 2011=, pp. 1–6.

[3] OpenGarden. (2017). Fire Chat. Accessed: Dec. 28, 2017. [Online]. Avail-
able: https://www.opengarden.com/firechat.html

[4] S. Saha, Sushovan, A. Sheldekar, J. C. Rijo, A. Mukherjee, and S. Nandi,
‘‘Post disaster management using delay tolerant network,’’ in Recent
Trends in Wireless and Mobile Networks (Communications in Computer
and Information Science), vol. 162. 2011, pp. 170–184, doi: 10.1007/978-
3-642-21937-5_16.

[5] D. G. Reina, M. Askalani, S. L. Toral, F. Barrero, E. Asimakopoulou,
and N. Bessis, ‘‘A survey on multihop ad hoc networks for disaster
response scenarios,’’ Int. J. Distrib. Sensor Netw., vol. 11, no. 10, pp. 1–16,
Jan. 2015, doi: 10.1155/2015/647037.

[6] K. Miranda, A. Molinaro, and T. Razafindralambo, ‘‘A survey on rapidly
deployable solutions for post-disaster networks,’’ IEEE Commun. Mag.,
vol. 54, no. 4, pp. 117–123, Apr. 2016, doi: 10.1109/MCOM.2016.
7452275.

[7] E. Rosas et al., ‘‘Survey on simulation for mobile ad-hoc communica-
tion for disaster scenarios,’’ J. Comput. Sci. Technol., vol. 31, no. 2,
pp. 326–349, 2016, doi: 10.1007/s11390-016-1630-x.

[8] H. Ghafghazi, A. Elmougy, H. T. Mouftah, and C. Adams, ‘‘Location-
aware authorization scheme for emergency response,’’ IEEE Access, vol. 4,
pp. 4590–4608, 2016, doi: 10.1109/ACCESS.2016.2601442.

[9] L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta, ‘‘Opportunistic networks:
The concept and research challenges in privacy and security,’’ in Proc.
WSPWN, Miami, FL, USA, Mar. 2006, pp. 134–147.

[10] L. Pelusi, A. Passarella, and M. Conti, ‘‘Opportunistic networking: Data
forwarding in disconnected mobile ad hoc networks,’’ IEEE Commun.
Mag., vol. 44, no. 11, pp. 134–141, Nov. 2006.

[11] L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta, ‘‘The concept of oppor-
tunistic networks and their research challenges in privacy and security,’’
inMobile and Wireless Network Security and Privacy. Boston, MA, USA:
Springer, 2007, ch. 5, pp. 85–117.

[12] C.-M. Huang, K.-C. Lan, and C.-Z. Tsai, ‘‘A survey of opportunistic
networks,’’ in Proc. AINAW, Ginowan, Japan, Mar. 2008, pp. 1672–1677.

[13] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, ‘‘The broadcast storm
problem in a mobile ad hoc network,’’ Wireless Netw., vol. 8, nos. 2–3,
pp. 153–167, 2002, doi: 10.1023/A:1013763825347.

[14] O. M. Al-Kofahi and A. El Kamal, ‘‘Survivability strategies in multihop
wireless networks,’’ IEEE Wireless Commun., vol. 17, no. 5, pp. 71–80,
Oct. 2010, doi: 10.1109/MWC.2010.5601961.

[15] A. Lindgren, A. Doria, and O. Schelén, ‘‘Probabilistic routing in
intermittently connected networks,’’ in Service Assurance with Partial
and Intermittent Resources (Lecture Notes in Computer Science),
vol. 3126, P. Dini, P. Lorenz, and J. N. de Souza, Eds. Berlin,
Germany: Springer-Verlag, 2004, pp. 239–254. [Online]. Available:
https://www.springer.com/us/book/9783540225676 and https://link.
springer.com/chapter/10.1007/978-3-540-27767-5_24, doi: 10.1007/978-
3-540-27767-5_24.

[16] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, ‘‘MaxProp: Routing
for vehicle-based disruption-tolerant networks,’’ in Proc. IEEE INFO-
COM, Apr. 2006, pp. 1–11.

[17] J. LeBrun, C.-N. Chuah, D. Ghosal, and M. Zhang, ‘‘Knowledge-based
opportunistic forwarding in vehicular wireless ad hoc networks,’’ in Proc.
IEEE 61st Veh. Technol. Conf. (VTC-Spring), vol. 4. May/Jun. 2005,
pp. 2289–2293.

[18] A. Martín-Campillo, J. Crowcroft, E. Yoneki, and R. Martí, ‘‘Evaluating
opportunistic networks in disaster scenarios,’’ J. Netw. Comput. Appl.,
vol. 36, no. 2, pp. 870–880, 2013, doi: 10.1016/j.jnca.2012.11.001.

[19] A. Vahdat and D. Becker, ‘‘Epidemic routing for partially-connected ad
hoc networks,’’ Duke Univ., Durham, NC, USA, Tech. Rep. CS-200006,
2000.

[20] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, ‘‘Spray and wait: An
efficient routing scheme for intermittently connected mobile networks,’’ in
Proc. WDTN. Philadelphia, PA, USA, Aug. 2005, pp. 252–259.

[21] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, ‘‘Spray and focus:
Efficient mobility-assisted routing for heterogeneous and correlatedmobil-
ity,’’ in Proc. PerCom, White Plains, NY, USA, Mar. 2007, pp. 79–85.

VOLUME 6, 2018 28465

http://dx.doi.org/10.1007/978-3-642-21937-5_16
http://dx.doi.org/10.1007/978-3-642-21937-5_16
http://dx.doi.org/10.1155/2015/647037
http://dx.doi.org/10.1109/MCOM.2016.7452275
http://dx.doi.org/10.1109/MCOM.2016.7452275
http://dx.doi.org/10.1007/s11390-016-1630-x
http://dx.doi.org/10.1109/ACCESS.2016.2601442
http://dx.doi.org/10.1023/A:1013763825347
http://dx.doi.org/10.1109/MWC.2010.5601961
http://dx.doi.org/10.1007/978-3-540-27767-5_24
http://dx.doi.org/10.1007/978-3-540-27767-5_24
http://dx.doi.org/10.1016/j.jnca.2012.11.001

H. Zatarain-Aceves et al.: MUMD Problem

[22] K. Wang, Y. Shao, L. Shu, Y. Sun, and L. He, ‘‘An improved spray and
wait algorithm based on rvns in delay tolerant mobile sensor networks,’’ in
Proc. ICC. London, U.K., Jun. 2015, pp. 3552–3556.

[23] I. Caragiannis, C. Galdi, and C. Kaklamanis, ‘‘Basic computations in wire-
less networks,’’ in Proc. ISAAC. Sanya, China, Dec. 2005, pp. 533–542.

[24] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, ‘‘Efficient rout-
ing in intermittently connected mobile networks: The multiple-copy
case,’’ IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 77–90, Feb. 2008,
doi: 10.1109/TNET.2007.897964.

[25] A. Clementi, R. Silvestri, and L. Trevisan, ‘‘Information spreading in
dynamic graphs,’’ Distrib. Comput., vol. 28, no. 1, pp. 55–73, Feb. 2015,
doi: 10.1007/s00446-014-0219-2.

[26] F. Kuhn and R. Oshman, ‘‘Dynamic networks: Models and algo-
rithms,’’ SIGACT News, vol. 42, no. 1, pp. 82–96, Mar. 2011, doi:
10.1145/1959045.1959064.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman, ‘‘Regular expressions and
languages,’’ in Introduction to Automata Theory, Languages, and Compu-
tation, 2nd ed. 2000, ch. 3, pp. 83–85.

[28] L. Xiao and S. Boyd, ‘‘Fast linear iterations for distributed averaging,’’
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004, doi: 10.1016/j.sysconle.
2004.02.022.

[29] S. Rajagopalan and D. Shah, ‘‘Distributed averaging in dynamic net-
works,’’ IEEE J. Sel. Topics Signal Process., vol. 5, no. 4, pp. 845–854,
Aug. 2011, doi: 10.1109/JSTSP.2011.2114635.

[30] W. Stadje, ‘‘The collector’s problem with group drawings,’’ Adv. Appl.
Probab., vol. 22, no. 4, pp. 866–882, 1990, doi: 10.2307/1427566.

[31] M. Ferrante andM. Saltalamacchia. (2014). The Coupon Collector’s Prob-
lem. Accessed: Dec. 28, 2017. [Online]. Available: http://www.mat.uab.
cat/matmat/PDFv2014/v2014n02.pdf

[32] A. Keränen, J. Ott, and T. Kärkkäinen, ‘‘The ONE simulator for DTN pro-
tocol evaluation,’’ in Proc. Simutools, Rome, Italy, 2009, pp. 55:1–55:10.

[33] D. R. Silva, A. Costa, and J. Macedo, ‘‘Energy impact analysis on DTN
routing protocols,’’ in Proc. ExtremeCom, Zurich, Switzerland, Mar. 2012,
pp. 1–6.

[34] M. Ababou, R. El Kouch, M. Bellafkih, and N. Ababou, ‘‘Energy efficient
and effect of mobility on ACDTN routing protocol based on ant colony,’’
in Proc. ICEIT. Marrakech, Morocco, Mar. 2015, pp. 335–340.

[35] C. O. Rolim et al., ‘‘Situation awareness and computational intelligence
in opportunistic networks to support the data transmission of urban
sensing applications,’’ Comput. Netw., vol. 111, pp. 55–70, Dec. 2016,
doi: 10.1016/j.comnet.2016.07.014.

[36] C. C. Sobin, V. Raychoudhury, and S. Saha, ‘‘An energy-efficient and
buffer-aware routing protocol for opportunistic smart trafficmanagement,’’
in Proc. ICDCN. Hyderabad, India, 2017, pp. 25:1–25:8.

[37] H. W. Lilliefors, ‘‘On the kolmogorov-smirnov test for normality with
mean and variance unknown,’’ J. Amer. Statist. Assoc., vol. 62, no. 318,
pp. 399–402, 1967, doi: 10.1080/01621459.1967.10482916.

[38] W. Conover, Practical Nonparametric Statistics (Wiley Series in Proba-
bility and Statistics: Applied Probability and Statistics). Washington, DC,
USA: Wiley, 1999.

[39] J. C. Araneda, H. Rudnick, S. Mocarquer, and P. Miquel, ‘‘Lessons from
the 2010 chilean earthquake and its impact on electricity supply,’’ in Proc.
POWERCON. Hangzhou, China, Oct. 2010, pp. 1–7.

[40] N. Aschenbruck, E. Gerhards-Padilla, and P. Martini, ‘‘Modeling mobility
in disaster area scenarios,’’ Perform. Eval., vol. 66, no. 12, pp. 773–790,
2009, doi: 10.1016/j.peva.2009.07.009.

HÉCTOR ZATARAIN-ACEVES received the B.E.
degree in computer systems engineering from the
Culiacan Institute of Technology, Culiacán, Mex-
ico, in 2008, and the M.Sc. degree in computer
science from CICESE Research Center, Ensenada,
Mexico, in 2011, where he is currently pursuing
the Ph.D. degree.

His research interests include algorithm design
and analysis, opportunistic networks, game theory,
and evolutionary computation.

JOSÉ ALBERTO FERNÁNDEZ-ZEPEDA received
the B.E. and M.Sc. degrees from the National
Autonomous University of Mexico in 1991 and
1994, respectively, and the Ph.D. degree from
Louisiana State University in 1999. Since 2000, he
has been an Associate Professor with the Depart-
ment of Computer Science, CICESE Research
Center, Mexico.

His research interests include the analysis and
design of parallel and distributed algorithms and

software process improvement in small organizations.

CARLOS A. BRIZUELA received the B.S. degree
from the Tijuana Institute of Technology and the
M.Sc. degree in electronics and telecommunica-
tions from CICESE in 1994, and the Ph.D. degree
from the Kyoto Institute of Technology in Infor-
mation and Production Sciences in 2001. He is
currently an Associate Professor with the Algo-
rithms and Biocomputing Laboratory, Computer
Sciences Department, CICESE Research Center.

His research interests include the analysis and
design of optimization and machine learning algorithms for applications in
structural bioinformatics and combinatorial optimization in engineering.

28466 VOLUME 6, 2018

http://dx.doi.org/10.1109/TNET.2007.897964
http://dx.doi.org/10.1007/s00446-014-0219-2
http://dx.doi.org/10.1145/1959045.1959064
http://dx.doi.org/10.1016/j.sysconle.2004.02.022
http://dx.doi.org/10.1016/j.sysconle.2004.02.022
http://dx.doi.org/10.1109/JSTSP.2011.2114635
http://dx.doi.org/10.2307/1427566
http://dx.doi.org/10.1016/j.comnet.2016.07.014
http://dx.doi.org/10.1080/01621459.1967.10482916
http://dx.doi.org/10.1016/j.peva.2009.07.009

	INTRODUCTION
	CONTRIBUTION OF THIS RESEARCH
	CONTENTS OF THIS PAPER

	RELATED WORK
	THE MUMD PROBLEM
	FORMAL DEFINITION OF THE MUMD
	APPLICATION SCENARIO
	MAPPING THE MUMD TO THE APPLICATION SCENARIO

	EDEN ALGORITHM
	MESSAGE PROPERTIES FOR EXCHANGE
	BINARY TRANSMISSION TREE
	ESTIMATOR OF THE EDEN ALGORITHM
	UPDATING THE PERMITTED NUMBER OF COPIES
	COPY PROMOTION
	COPY DEPURATION

	PSEUDOCODE OF EDEN ALGORITHM
	UPDATE-ESTIMATOR PROCEDURE
	UPDATE-MESSAGES PROCEDURE
	CREATE-AVAILABLE-SUMMARY PROCEDURE
	CREATE-REQUESTED-SUMMARY PROCEDURE
	EXCHANGE-MESSAGES PROCEDURE

	EDEN WITH WARM-UP ALGORITHM

	EXPERIMENTAL DESIGN
	METRICS FOR PERFORMANCE EVALUATION
	RELATIVE UNIFORMITY FACTOR
	MEMORY UTILIZATION FACTOR
	NUMBER OF DRAWS TO OBTAIN THE COLLECTION OF MESSAGES
	CONVERGENCE TIME

	NETWORK SIMULATOR
	PARAMETER SELECTION
	NUMBER OF VERTICES
	AREA OF THE SIMULATION
	COMMUNICATION INTERFACE
	MOBILITY MODELS
	MESSAGE PARAMETERS
	VERTEX STORAGE PARAMETERS
	ENERGY MODEL AND PARAMETERS
	VERTEX MAXIMUM ARRIVAL TIME
	SIMULATION SCENARIOS

	STATISTICAL ANALYSIS
	COMPUTING ENVIRONMENT
	PARAMETERS OF THE ALGORITHMS

	RESULTS
	CONVERGENCE OF THE ESTIMATOR
	SIMULATION FOR SCENARIO A
	SIMULATION FOR SCENARIO B
	SIMULATION FOR SCENARIO C
	SIMULATION FOR SCENARIO D
	SIMULATION FOR SCENARIO E

	CONCLUDING REMARKS AND FUTURE WORK
	REFERENCES
	Biographies
	HÉCTOR ZATARAIN-ACEVES
	JOSÉ ALBERTO FERNÁNDEZ-ZEPEDA
	CARLOS A. BRIZUELA

