Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1475
Título : Evaluation of algorithms for traffic sign detection
Autor : López Montiel, Miguel
Rubio, Yoshio
Sánchez Adame, Moises
Orozco Rosas, Ulises
Palabras clave : Algorithms;Traffic
Sede: Campus Tijuana
Fecha de publicación : sep-2019
Citación : Miguel Lopez-Montiel, Yoshio Rubio, Moisés Sánchez-Adame, and Ulises Orozco-Rosas "Evaluation of algorithms for traffic sign detection", Proc. SPIE 11136, Optics and Photonics for Information Processing XIII, 111360M (6 September 2019); https://doi.org/10.1117/12.2529709
Resumen : Traffic sign detection is a crucial task in autonomous driving systems. Due to its importance, several techniques have been used to solve this problem. In this work, the three more common approaches are evaluated. The first approach uses a model of the traffic sign which is based in color and shape. The second one enhances the image model of the first approach using K-means for color clustering. The last approach uses convolutional neural networks designed for image detection. The LISA Traffic Sign Dataset was used which it was divided into three superclasses: prohibition, mandatory, and warning signs. The evaluation was done using objective metrics used in the state-of-the-art.
metadata.dc.description.url: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11136/2529709/Evaluation-of-algorithms-for-traffic-sign-detection/10.1117/12.2529709.short?SSO=1
URI : https://repositorio.cetys.mx/handle/60000/1475
Aparece en las colecciones: Ponencias

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons