Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1756
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez-Leyva, Josué Aarón-
dc.contributor.authorBarrera-Silva, Carolina-
dc.contributor.authorSarmiento-Leyva, Luisa Fernanda-
dc.coverage.spatialBoca del Río, Veracruz, Méxicoes_ES
dc.date.accessioned2024-02-28T20:50:16Z-
dc.date.available2024-02-28T20:50:16Z-
dc.date.issued2021-10-
dc.identifier.citationJ. A. Lopez-Leyva, C. Barrera-Silva and L. F. Sarmiento-Leyva, "Advanced Power Generation & Demand Forecasting Considering the Complete Energy Matrix using an Artificial Neural Network," 2021 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Río, Veracruz, Mexico, 2021, pp. 1-5, doi: 10.1109/ICEV52951.2021.9632655. keywords: {Correlation;Conferences;Demand forecasting;Artificial neural networks;Power generation;correlation factor;power generation & demand forecasting;Artificial Neural Network},es_ES
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1756-
dc.description.abstractThis paper introduces the application of an Artificial Neural Network to perform the power generation & demand forecasting of a regional electricity network. The main technical contribution of this article is the consideration of many variables (35) that involve the complete energy matrix information to calculate the generated and demanded power accurately. The final results showed that the related correlation factor of the net generation forecast and net demand forecast using Artificial Neural Network are very adequate (greater than 0.95). Furthermore, the percentage of error between the predicted value and the actual power generation and demand values is reduced (up to 0.22 %). Finally, the results of the long-term forecast (up to 30 days) also proved to be adequate considering the correlation factor and percentage of error associated with the power generation and demand forecast.es_ES
dc.language.isoen_USes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectCorrelationes_ES
dc.subjectConferenceses_ES
dc.subjectDemand forecastinges_ES
dc.subjectArtificial neural networkses_ES
dc.subjectPower generationes_ES
dc.titleAdvanced Power Generation & Demand Forecasting Considering the Complete Energy Matrix using an Artificial Neural Networkes_ES
dc.typeWorking Paperes_ES
dc.description.urlhttps://ieeexplore.ieee.org/document/9632655/citations#citationses_ES
dc.identifier.doihttps://doi.org/10.1109/ICEV52951.2021.9632655-
dc.subject.sedeCampus Ensenadaes_ES
Aparece en las colecciones: Ponencias

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons