Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1844
Título : Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing
Autor : Yu, Xiaofan
Thomas, Anthony
Gomez Moreno, Ivannia
Gutierrez, Louis
Simunic Rosing, Tajana
Palabras clave : Edge Computing;Lifelong Learning;Hyperdimensional Computing
Sede: Campus Tijuana
Fecha de publicación : mar-2024
Resumen : On-device learning has emerged as a prevailing trend that avoids the slow response time and costly communication of cloud-based learning. The ability to learn continuously and indefinitely in a changing environment, and with resource constraints, is critical for real sensor deployments. However, existing designs are inadequate for practical scenarios with (i) streaming data input, (ii) lack of supervision and (iii) limited on-board resources. In this paper, we design and deploy the first on-device lifelong learning system called LifeHD for general IoT applications with limited supervision. LifeHD is designed based on a novel neurally-inspired and lightweight learning paradigm called Hyperdimensional Computing (HDC). We utilize a two-tier associative memory organization to intelligently store and manage high-dimensional, low-precision vectors, which represent the historical patterns as cluster centroids. We additionally propose two variants of LifeHD to cope with scarce labeled inputs and power constraints. We implement LifeHD on offthe-shelf edge platforms and perform extensive evaluations across three scenarios. Our measurements show that LifeHD improves the unsupervised clustering accuracy by up to 74.8% compared to the state-of-the-art NN-based unsupervised lifelong learning baselines with as much as 34.3x better energy efficiency.
metadata.dc.description.url: https://arxiv.org/abs/2403.04759
URI : https://repositorio.cetys.mx/handle/60000/1844
Aparece en las colecciones: Ponencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2403.04759v1.pdf3.96 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons