Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1845
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGomez Moreno, Ivannia-
dc.contributor.authorYu, Xiaofan-
dc.contributor.authorRosing, Tajana-
dc.coverage.spatialIncheon, Korea, Republic ofes_ES
dc.date.accessioned2024-10-07T19:01:20Z-
dc.date.available2024-10-07T19:01:20Z-
dc.date.issued2024-01-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1845-
dc.description.abstractTime series forecasting is shifting towards Edge AI, where models are trained and executed on edge devices instead of in the cloud. However, training forecasting models at the edge faces two challenges concurrently: (1) dealing with streaming data containing abundant noise, which can lead to degradation in model predictions, and (2) coping with limited on-device resources. Traditional approaches focus on simple statistical methods like ARIMA or neural networks, which are either not robust to sensor noise or not efficient for edge deployment, or both. In this paper, we propose a novel, robust, and lightweight method named KalmanHD for on-device time series forecasting using Hyperdimensional Computing (HDC). KalmanHD integrates Kalman Filter (KF) with HDC, resulting in a new regression method that combines the robustness of KF towards sensor noise and the efficiency of HDC. KalmanHD first encodes the past values into a high-dimensional vector representation, then applies the Expectation-Maximization (EM) approach as in KF to iteratively update the model based on the incoming samples. KalmanHD inherently considers the variability of each sample and thereby enhances robustness. We further accelerate KalmanHD by substituting the expensive matrix multiplication with efficient binary operations between the covariance and the encoded values. Our results show that KalmanHD achieves MAE comparable to the state-of-the-art noise-optimized NN-based methods while running 3.6−8.6× faster on typical edge platforms.es_ES
dc.language.isoen_USes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectTraininges_ES
dc.subjectStatistical analysises_ES
dc.subjectSource codinges_ES
dc.subjectTime series analysises_ES
dc.subjectPredictive modelses_ES
dc.subjectRobustnesses_ES
dc.subjectData modelses_ES
dc.titleKalmanHD: Robust On-Device Time Series Forecasting with Hyperdimensional Computinges_ES
dc.typeWorking Paperes_ES
dc.description.urlhttps://ieeexplore.ieee.org/document/10473878/keywords#keywordses_ES
dc.identifier.doi10.1109/ASP-DAC58780.2024.10473878-
dc.subject.sedeCampus Tijuanaes_ES
Aparece en las colecciones: Ponencias

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons