https://repositorio.cetys.mx/handle/60000/191
Título : | Experimental image and range scanner datasets fusion in SHM for displacement detection |
Otros títulos : | Structural Control and Health Monitoring |
Autor : | Rivera-Castillo, Javier Flores-Fuentes, Wendy Rivas-Lopez, Moisés Sergiyenko, Oleg González-Navarro, Félix F. Rodríguez Quiñonez, Julio C. Hernández-Balbuena, Daniel Lindner, Lars Básaca-Preciado, Luis C. |
Palabras clave : | Artificial intelligence tools;Data acquisition;Health monitoring;Measurements;Sensors for damage detection;Signal processing |
Fecha de publicación : | 2-dic-2016 |
Citación : | 24;10 |
Resumen : | Optical images and signals can be used to detect displacement in civil engineering structures. This paper presents a technical experimentation of a vision‐based technology and artificial intelligence algorithms methodology for structural health monitoring of new and aging structures, by a noncontact and nondestructive system. The experimental study emphasis is on the outdoor urban environment, by the detection of spatial coordinate displacement on the structures, in order to perform a damage assessment. Also, the experimental study contains both theoretical and experimental aspects of the fusion of image and range scanner datasets created using intelligent algorithms. A camera and an optical scanning system were used to generate high resolution and quality images for 2D imaging, and 3D accuracy range data from optoelectronic sensor signals. Scans at a specific area of an engineering structure were performed to measure spatial coordinates displacements, successfully verifying the effectiveness and the robustness of the proposed non‐contact and nondestructive monitoring approach. |
metadata.dc.description.url: | DOI 10.1002/stc.1967 |
URI : | https://repositorio.cetys.mx/handle/60000/191 |
ISSN : | 1545-2263 |
Aparece en las colecciones: | Artículos de Revistas |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons