https://repositorio.cetys.mx/handle/60000/252
Título : | Evaluation of algorithms for traffic sign detection |
Autor : | López Montiel, Miguel |
Otros Autores: | Rubio, Yoshio Sánchez-Adame, Moisés |
Autor: | Orozco Rosas, Ulises |
Palabras clave : | Detection;Traffic sign;Machine learning;Computer vision;Deep learning;Autonomous vehicles |
Sede: | Campus Tijuana |
Fecha de publicación : | 6-sep-2019 |
Citación : | Miguel Lopez-Montiel, Yoshio Rubio, Moisés Sánchez-Adame, Ulises OrozcoRosas, "Evaluation of algorithms for traffic sign detection," Proc. SPIE 11136, Optics and Photonics for Information Processing XIII, 111360M (6 September 2019) |
Resumen : | Traffic sign detection is a crucial task in autonomous driving systems. Due to its importance, several techniques have been used to solve this problem. In this work, the three more common approaches are evaluated. The first approach uses a model of the traffic sign which is based in color and shape. The second one enhances the image model of the first approach using K-means for color clustering. The last approach uses convolutional neural networks designed for image detection. The LISA Traffic Sign Dataset was used which it was divided into three superclasses: prohibition, mandatory, and warning signs. The evaluation was done using objective metrics used in the state-of-the-art. |
URI : | doi: 10.1117/12.2529709 |
Aparece en las colecciones: | Ponencias |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Evaluation of algorithms for traffic sign detection.pdf | 7.44 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons