https://repositorio.cetys.mx/handle/60000/91
Título : | Adaptive resource allocation with job runtime uncertainty |
Otros títulos : | Journal of grid computing |
Autor : | Ramirez Velarde, Raúl Tchernykh, Andrei Barba Jimenez, Carlos Hirales-Carbajal, Adan |
Palabras clave : | Runtime uncertainty;Distributed system;Resource allocation;Self-similarity;Heavy tails |
Fecha de publicación : | oct-2017 |
Citación : | 15;4 |
Resumen : | In this paper, we address the problem of dynamic resource allocation in presence of job run- time uncertainty. We develop an execution delay model for runtime prediction, and design an adaptive stochastic allocation strategy, named Pareto Fractal Flow Predictor (PFFP). We conduct a comprehensive performance evaluation study of the PFFP strategy on real production traces, and compare it with other well-known non-clairvoyant strategies over two metrics. In order to choose the best strategy, we perform bi-objective analysis according to a degradation methodology. To analyze possible biasing results and negative effects of allowing a small portion of theproblem instances with large deviation to dominate the conclusions, we present performance profiles of the strategies. We show that PFFP performs well in different scenarios with a variety of workloads and distributed resources. |
metadata.dc.description.url: | https://link.springer.com/article/10.1007/s10723-017-9410-6 |
URI : | https://repositorio.cetys.mx/handle/60000/91 |
ISSN : | 1572-9184 |
Aparece en las colecciones: | Artículos de Revistas |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons