https://repositorio.cetys.mx/handle/60000/916
Título : | Part of the studies in computational intelligence book series |
Título de capítulo: | Path planning by search algorithms in graph-represented workspaces |
Autor : | Venegas Perez, Ivan Dario |
Autor: | Montiel, Oscar Orozco Rosas, Ulises |
Palabras clave : | Path planning;Knowledge representation;Graph traversal;Algorithms |
Sede: | Campus Tijuana |
Fecha de publicación : | 7-nov-2020 |
Citación : | Perez I.D.V., Montiel O., Orozco-Rosas U. (2021) Path Planning by Search Algorithms in Graph-Represented Workspaces. In: Melin P., Castillo O., Kacprzyk J. (eds) Recent Advances of Hybrid Intelligent Systems Based on Soft Computing. Studies in Computational Intelligence, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-58728-4_4 |
Resumen : | Path planning is an essential task in autonomous mobile robotics that demands to navigate following a minimum-cost path, which involves partitioning the landscape in nodes and the use of combinatorial optimization methods to find the optimal sequence of nodes to follow. Traditional algorithms such as the A* and Dijkstra are computationally efficient in landscapes with a reduced number of nodes. Most of the practical applications require to use a significantly large number of nodes up to the point that the problem might be computationally explosive. This work contributes to state-of-the-art with two heuristics for the A* algorithm that allows finding the optimal path in landscapes with a large number of nodes. The heuristics used the Euclidean and Manhattan distance in the estimation function. We present a comparative analysis of our proposal against the Dijkstra’s and A* algorithms. All the experiments were achieved using a simulation-platform specially designed for testing important algorithm features, such as the grid size, benchmark problems, the design of custom-made test sceneries, and others. Relevant results are drawn to continue working in this line. |
URI : | https://repositorio.cetys.mx/handle/60000/916 |
ISSN : | Online ISBN 978-3-030-58728-4 9783030587277 |
Aparece en las colecciones: | Capítulos de Libro |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
7092.jpg | 65.56 kB | JPEG | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons