Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/873
Título : Demonstrating the robustness of frequency-domain correlation filters for 3D object recognition applications
Autor : Picos, Kenia
Orozco Rosas, Ulises
Díaz Ramírez, Víctor H.
Otros Autores: CETYS Universidad
Palabras clave : Correlation filters;Frequency domain filtering;Object recognition;Three-dimensional estimation
Sede: Sistemas
Fecha de publicación : 6-sep-2019
Resumen : This paper proposes frequency-domain correlation filtering to solve object recognition of three-dimensional (3D) targets. We perform a linear correlation in the frequency domain between an input frame of the video sequence and a designed filter. This operation measures the correspondence between the two signals. In order to produce a high matching score, we design a bank of correlation filters, in which each filter contains unique information of the target in a single view and statistical parameters of the scene. In this paper, we demonstrate the feasibility of correlation filters used to solve 3D object recognition and their robustness to different image conditions such as noise, cluttered background, and geometrical distortions of the target. The evaluation performance presents a high accuracy in terms of quantitative metrics.
Descripción : Scopus
metadata.dc.description.url: https://doi.org/10.1117/12.2528944
URI : https://repositorio.cetys.mx/handle/60000/873
ISBN : 9781510629653
Aparece en las colecciones: Ponencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
picos.pdfDemonstrating the robustness of frequency-domain correlation filters for 3D object recognition applications192.42 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons